answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
2 years ago
7

An automobile tire is filled to a pressure of 240.0 kPa early in the morning when the temperature is 15.0C. After the car is dri

ven all day over hot roads, the tire temperature is 18.0C. Estimate the new pressure.
Physics
1 answer:
yuradex [85]2 years ago
5 0

Answer:

<h2> 242.5kPa</h2>

Explanation:

According to one of the gas laws, \frac{P1}{T1} =\frac{P2}{T2}

Given P1 = 240.0kPa, T1, 15.0°C, T2 = 18.0°C, P2 = ?

Substituting this values into the equation, we have;

\frac{240}{15+273} =\frac{P2}{18+273}\\\frac{240}{288} =\frac{P2}{291}\\

Cross multiplying we have;

288P2 = 240*291

P2 = \frac{240*291}{288} \\P2 = 242.5kPa

The new pressure is 242.5kPa

You might be interested in
(HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c
umka2103 [35]

Answer:

E=\frac{k\,Q}{d^2}

Explanation:

The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula: E=\frac{k\,Q}{d^2}, where K represents the Coulomb constant.

Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

F_C=k\frac{Q_1\,Q_2}{d^2}

but modified with only one charge showing in the numerator of the expression.

8 0
2 years ago
It takes a slug 20 minutes to travel from the grass to the trash can , a trip of 15 meters. How far could the slug travel in 60
inn [45]

Answer:

45 meters

Explanation:

20 min = 15 meters

So if 20 x 3 = 60

you have to do 3 x 15 !

- which equals to 45 <3

<u>- mark me brainlest pls . </u>

5 0
2 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
2 years ago
A 1100kg car pulls a boat on a trailer. (a) what total force resists the motion of the car, boat,and trailer, if the car exerts
likoan [24]
Refer to the figure shown below.

m₁ = 1100 kg, the mass of the car
m₂ = 700 kg, the mass of the trailer and boat
F = 1900 N, the driving force acting on the car
N₁ = m₁g,  the normal reaction on the car
N₂ = m₂g, the normal force on the trailer and boat
μN₁ and μN₂ are frictional forces, where  =  kinetic coefficient of friction
T = the force in the hitch between the car and trailer.

Part (a)
Let R₁ = the total force that resists the motion of the car, boat, and trailer.
Because the acceleration is 0.550m/s², therefore
(m₁ + m₂ kg)*(0.55 m/s²) = F
(1100+700 kg)*(0.55 m/s²) = (1900 - R₁) N
990 = 1900 - R
R₁ = 910 N

Answer: The resistive force is 910 N

Part (b)
80% of the resistive forces are experienced by the boat and trailer.
Let the resistive force be R₂.
Then
R₂ = 0.8*R₁ = 728 N
If the tension in the hitch between the car and the trailer is T, then
T - R₂ = m₂(0.55 m/s²)
(T - 728 N) = (700 kg)*(0.55 m/s²)
T - 728 = 385
T = 1113 N

Answer: The force in the hitch is 1113 N

3 0
2 years ago
You are target shooting using a toy gun that fires a small ball at a speed of 15 m/s. When the gun is fired at an angle of 31 de
Ray Of Light [21]

Answer: 13.1° from the horizontal

Explanation: For projectile

Horizontal distance R of a projectile is:

R= U×Usin2x/g

Where U is the speed of projectile, x is angle of projectile and g= acceleration due to gravity=9.8m/s

R= 15×15sin(2×31)/9.8= 225sin(62)/9.8=20.27m

Therefore if R is halved.

R/2 = 20.27/2=10.14m

Hence the angle for this case is.

Making sin(2x) the subject of formula

Sin2x= Rg/U×U

R is now 10.14 in this case.

Sin2x= 10.14×9.8/15×15=0.4415

2x=arcsin0.4415=26.2

x= 26.2/2

x= 13.1°

Good luck...

3 0
2 years ago
Other questions:
  • Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous plan
    14·1 answer
  • Which voice can produce a pitch that has a speed of 343 m/s and a wavelength of 0.68 m? Check all that apply.
    12·2 answers
  • The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
    8·2 answers
  • A binary star system consists of two stars of masses m1 and m2. The stars, which gravitationally attract each other, revolve aro
    12·1 answer
  • Feng and Isaac are riding on a merry-ground. Feng rides on a horse at the outer rim of the circular platform, twice as far from
    10·1 answer
  • You go to an amusement park with your friend Betty, who wants to ride the 80-m-diameter Ferris wheel. She starts the ride at the
    10·1 answer
  • Consider a lawnmower of mass m which can slide across a horizontal surface with a coefficient of friction μ. In this problem the
    6·1 answer
  • You use a slingshot to launch a potato horizontally from the edge of a cliff with speed v0. The acceleration due to gravity is g
    13·1 answer
  • A circular coil 17.0 cm in diameter and containing nine loops lies flat on the ground. The Earth's magnetic field at this locati
    7·1 answer
  • A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.00 m at constant speed. If the coeff
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!