answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
2 years ago
13

On the image at right, the two magnets are the same. Which paper clip would be harder to remove?

Physics
1 answer:
serious [3.7K]2 years ago
7 0

Answer:B

Explanation: The book is thinner making magnets attraction stronger, making the paper clip harder to move

You might be interested in
Dao makes a table to identify the variables used in the equations for centripetal acceleration. A 2 column 5 rows. The first col
Zanzabum

Answer:

Column X. Tangential Speed

Column Y. radius  

Explanation:

The equation for centripetal acceleration is

           a_{c} = v² / r

Where v is the tangential velocity of the body and the radius of curvature.

To analyze this equation you must place the tangential velocity in one column and in the other the turning radius

Let's check the answers

Column X. Tangential Speed

Column Y. radius  

This is the correct answer.

5 0
2 years ago
Read 2 more answers
Which best describes the importance of mitosis to living organisms? genetic variation and growth growth and development developm
Scrat [10]

Answer:

b.

Explanation:

Mitosis is important for growth and development  of living organisms.

8 0
1 year ago
he drawing shows two perpendicular, long, straight wires, both of which lie in the plane of the paper. The current in each of th
AleksandrR [38]

Answer:

The magnitudes of the net magnetic fields at points A and B is 2.66 x 10^{-6} T

Explanation:

Given information :

The current of each wires, I = 4.7 A

dH = 0.19 m

dV = 0.41 m

The magnetic of straight-current wire :

B= μ_{0}I/2πr

where

B = magnetic field (T)

μ_{0} = 1.26 x 10^{-6} (N/A^{2})

I = Current (A)

r = radius (m)

the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,

BH = μ_{0}I/2πr

     = (1.26 x 10^{-6})(4.7)/(2π)(0.19)

     = 4.96 x 10^{-6} T

BV = μ_{0}I/2πr

     = (1.26 x  10^{-6})(4.7)/(2π)(0.41)

     = 2.3 x 10^{-6} T

hence,

the net magnetic field = BH - BV

                                     = 4.96 x 10^{-6} - 2.3 x 10^{-6}

                                     = 2.66 x 10^{-6} T

4 0
1 year ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
2 years ago
It's your birthday, and to celebrate you're going to make your first bungee jump. You stand on a bridge 110 m above a raging riv
zzz [600]

Answer:

h=20.66m

Explanation:

First we need the speed when the cord starts stretching:

V_2^2=V_o^2-2*g*\Delta h

V_2^2=-2*10*(-31)

V_2=24.9m/s   This will be our initial speed for a balance of energy.

By conservation of energy:

m*g*h+1/2*K*(h_o-l_o-h)^2-m*g*(h_o-l_o)-1/2*m*V_2^2=0

Where

h is your height at its maximum elongation

h_o is the height of the bridge

l_o is the length of the unstretched bungee cord

800h+21*(79-h)^2-63200-24800.4=0

21h^2-2518h+43060.6=0 Solving for h:

h_1=20.66m  and h_2=99.24m  Since 99m is higher than the initial height of 79m, we discard that value.

So, the final height above water is 20.66m

6 0
2 years ago
Read 2 more answers
Other questions:
  • A rocket can fly into space because !
    7·1 answer
  • Caleb is swinging Rachel in a circle with a centripetal force of 533 N. If the radius of the circle is 0.75 m and Rachel has a m
    7·2 answers
  • Identical cannon balls are fired with the same force, one each from four cannons having respective bore lengths of 1.0 meter, 2.
    10·1 answer
  • Electric charge is uniformly distributed inside a nonconducting sphere of radius 0.30 m. The electric field at a point P, which
    7·1 answer
  • A radioactive substance decays exponentially. A scientist begins with 200 milligrams of a radioactive substance. After 17 hours,
    10·1 answer
  • Megan rode the bus to school, which is located 8 kilometers from her home. If Megan's frame of reference is her house, and it to
    7·1 answer
  • The burning of fossil fuels contributes to the addition of greenhouse gases to the atmosphere. These gases trap thermal energy i
    7·2 answers
  • Sara and Saba are identical twins who are the same in every way, including their weights. One day, Sara and Saba decided to go f
    12·1 answer
  • Observe: Up until now, all the problems you have solved have involved converting only one unit. However, some conversion problem
    6·1 answer
  • The index of refraction of water is 1.33. If you (or a fish) were under calm water swimming in the daytime, looking upward you w
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!