answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
2 years ago
7

A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm li

ght from a He-Ne laser. Because the lecture hall is very large, the interference pattern will be projected on a wall that is 7.0 m from the slits. For easy viewing by all students in the class, the professor wants the distance between the m=0 and m=1 maxima to be 35 cm. What slit separation is required in order to produce the desired interference pattern?
Physics
1 answer:
babunello [35]2 years ago
3 0

Answer:

0.00001266 m

Explanation:

D = Distance from source to screen

m = Order

d = Slit separation

The distance from a point on the screen to the center line

y=\frac{m\lambda D}{d}

At m = 0

y_0=0

y_1-y_0=35\ cm\\\Rightarrow y_1=35\ cm

At m = 1

y_1=\frac{1\times 633\times 10^{-9}\times 7}{d}\\\Rightarrow d=\frac{1\times 633\times 10^{-9}\times 7}{0.35}\\\Rightarrow d=0.00001266\ m

The slit separation is 0.00001266 m

You might be interested in
A vehicle has an initial velocity of v0 when a tree falls on the roadway a distance xf in front of the vehicle. The driver has a
Korvikt [17]

Answer:

v^2=v_o^2-2\times a\times (v_o.t)

Explanation:

Given:

Initial velocity of the vehicle, v_o

distance between the car and the tree, x_f

time taken to respond to the situation, t

acceleration of the car after braking, a

Using equation of motion:

v^2=u^2+2a.s ..............(1)

where:

v= final velocity of the car when it hits the tree

u= initial velocity of the  car when the tree falls

a= acceleration after the brakes are applied

s= distance between the tree and the car after the brakes are applied.

s=v_o\times t

Now for this situation the eq. (1) becomes:

v^2=v_o^2-2\times a\times (v_o.t) (negative sign is for the deceleration after the brake is applied to the car.)

5 0
1 year ago
The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the
otez555 [7]

Answer:

0.647 nC

Explanation:

The force experienced by a charge due to the presence of an electric field is given by

F=qE

where

q is the charge

E is the magnitude of the electric field

In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

F=5.50\mu N = 5.50\cdot 10^{-6} N

Therefore, if the electric field magnitude is

E=8.50 kN/C = 8500 N/C

Then the charge on each antenna would be

q=\frac{F}{E}=\frac{5.50\cdot 10^{-6} N}{8500 N/C}=6.47\cdot 10^{-10} C = 0.647 nC

8 0
2 years ago
Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweez
Zanzabum

(a)  3.3\cdot 10^{-6} Pa

The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

p=\frac{I}{c}

where

I is the intensity of the wave

c is the speed of light

In this problem,

I=1000 W/m^2

and substituting c=3\cdot 10^8 m/s, we find the radiation pressure

p=\frac{1000 W/m^2}{3\cdot 10^8 m/s}=3.3\cdot 10^{-6}Pa

(b) 4.4\cdot 10^{-8} m/s^2

Since we know the cross-sectional area of the laser beam:

A=6.65\cdot 10^{-29}m^2

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

F=pa=(3.3\cdot 10^{-6}Pa)(6.65\cdot 10^{-29} m^2)=2.2\cdot 10^{-34}N

And then, since we know the mass of the atom

m=5.01\cdot 10^{-27}kg

we can find the acceleration, by using Newton's second law:

a=\frac{F}{m}=\frac{2.2\cdot 10^{-34} N}{5.01\cdot 10^{-27} kg}=4.4\cdot 10^{-8} m/s^2

6 0
2 years ago
A person wants to lose weight by "pumping iron". The person lifts an 80 kg weight 1 meter. How many times must this weight be li
statuscvo [17]

Answer:

37357 sec  

or 622 min

or 10.4 hrs

Explanation:

GIVEN DATA:

Lifting weight 80 kg

1 cal = 4184 J

from information given in question we have

one lb fat consist of 3500 calories = 3500 x 4184 J

= 14.644 x 10^6 J  

Energy burns in 1 lift = m g h

                                  = 80 x 9.8 x 1 = 784 J

lifts required = \frac{(14.644 x 10^6)}{784}

                      = 18679

from the question,

1 lift in 2 sec.

so, total time = 18679 x 2 = 37357 sec  

or 622 min

or 10.4 hrs

3 0
1 year ago
A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first bl
tatuchka [14]

By Newton's second law, assuming <em>F</em> is horizontal,

• the net <u>horizontal</u> force on the <u>larger</u> block is

<em>F</em> - <em>µmg</em> = 3<em>mA</em>

where <em>µmg</em> is the magnitude of friction felt by the larger block due to rubbing with the smaller one, <em>µ</em> is the coefficient of static friction between the two blocks, and <em>A</em> is the block's acceleration;

• the net <u>vertical</u> force on the <u>larger</u> block is

4<em>mg</em> - 3<em>mg</em> - <em>mg</em> = 0

where 4<em>mg</em> is the mag. of the normal force of the surface pushing up on the combined mass of the two blocks, 3<em>mg</em> is the weight of the larger block, and <em>mg</em> is the weight of the smaller block;

• the net <u>horizontal</u> force on the <u>smaller</u> block is

<em>µmg</em> = <em>ma</em>

where <em>µmg</em> is again the friction between the two blocks, but notice that this points in the same direction as <em>F</em>. It is the only force acting on the smaller block in the horizontal direction, so (b) static friction is causing the smaller block to accelerate;

• the net <u>vertical</u> force on the <u>smaller</u> block is

<em>mg</em> - <em>mg</em> = 0

where <em>mg</em> is the magnitude of both the normal force of the larger block pushing up on the smaller one, and the weight of the smaller block.

(You should be able to draw your own FBD's based on the forces mentioned above.)

(c) Solve the equations above for <em>A</em> and <em>a</em> :

<em>A</em> = (<em>F</em> - <em>µmg</em>) / (3<em>m</em>)

<em>a</em> = <em>µg</em>

5 0
1 year ago
Other questions:
  • A galloping pony speeds past you at 5 m/s. The frequency of the sound produced by the hooves on the dirt is 221 Hz. Assume the s
    14·2 answers
  • What is the unresolved problem that is facing scientists on the island of Guam?
    7·1 answer
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
    10·2 answers
  • Which situation describes the highest rate of power?
    10·1 answer
  • When a particle is a distance r from the origin, its potential energy function is given by the equation U(r)=kr, where k is a co
    6·1 answer
  • During the filming of a movie, a car sits atop a cliff edge. To be able to get the car to move from the cliff, the workers had t
    11·1 answer
  • Two soccer players, Mia and Alice, are running as Alice passes the ball to Mia. Mia is running due north with a speed of 6.00 m/
    10·1 answer
  • A diver runs horizontally with a speed of 1.20 m/s off a platform that is 10.0 m above the water. What is his speed just before
    8·1 answer
  • Init. A
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!