Force applied = F = 628 N
<span>Acceleration = a m/s² </span>
<span>Newton's 2nd law of motion : F = Ma </span>
<span> a = F/M -------- (1) </span>
<span>New mass of the crate = M1 = 3.8M kg </span>
<span>New acceleration = a1 = F/M1 = F/(3.8 M) ----- (2) </span>
<span>a1/a = {F/(3.8M)}/(F/M) = 1/3.8 = 10/38 = 5/19 ------- Answer</span>
Use ideal gas equation, with T constant.
pV =nRT => pV / n = RT = constant
n = K* [units of particles]
pV / [units of particles] = constant
13 psi * 160 mL / 15 units = p * 150 mL / 10 units =>
=> p = [13psi*160mL/15units]*[10units/150mL] = 9.2 psi
Answer:
F = Gm1m2/r^2 where G = 6.67x10^-11, m1 =1300, m2 = 7800, r = 0.23m
F = 6.67x10^-11 *1300*7800/(0.23)^2 = 0.0127852N
Explanation:
A complex entity involving the Earth's biosphere, atmosphere, oceans, and soil; the totality constituting a feedback or cybernetic system which seeks an optimal physical and chemical environment for life on this planet
M1 descending
−m1g + T = m1a
m2 ascending
m2g − T = m2a
this gives :
(m2 − m1)g = (m1 + m2)a
a =
(m2 − m1)g/m1 + m2
= (5.60 − 2)/(2 + 5.60) x 9.81
= = 4.65m/s^2