answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
2 years ago
7

Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a

great amount of angular momentum when rotating. A wind turbine has a total of 3 blades. Each blade has a mass of m = 5500 kg distributed uniformly along its length and extends a distance r = 44 m from the center of rotation. The turbine rotates with a frequency of f = 13 rpm.
a. Calculate the total moment of inertia of the wind turbine about its axis, in units of kilogram meters squared.
b. Calculate the angular momentum of the wind turbine, in units of kilogram meters squared per second.
Physics
1 answer:
horsena [70]2 years ago
7 0

Answer:

a)106.48 x 10⁵ kg.m²

b)144.97 x 10⁵  kgm² s⁻¹  

Explanation:

a)Given

m = 5500 kg

l = 44 m

Moment of inertia of one blade

I= 1/3 x m l²

where m is mass of the blade

l is length of each blade.

Putting all the required values, moment of inertia of one blade will be

I= 1/3 x 5500 x 44²  

I= 35.49 x 10⁵ kg.m²

Moment of inertia of 3 blades

I= 3 x 35.49 x 10⁵ kg.m²

I= 106.48 x 10⁵ kg.m²

b) Angular momentum 'L' is given by

L =I x ω

where,

I= moment of inertia of turbine i.e  106.48 x 10⁵ kg.m²

ω=angular velocity =2π f

f is frequency of rotation of blade i.e  13 rpm

f = 13 rpm=>= 13 / 60 revolution per second

ω = 2π f =>  2π  x  13 / 60 rad / s

L=I x ω =>106.48 x 10⁵ x   2π  x  13 / 60

  = 144.97 x 10⁵  kgm² s⁻¹    

You might be interested in
In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
faust18 [17]
Below are the choices that can be found in the other sources:

A. diffraction 
<span>B. refraction </span>
<span>C. reflection </span>
<span>D. transmission
</span>
The answer is diffraction. It means that <span>the process by which a beam of light or other system of waves is spread out as a result of passing through a narrow aperture or across an edge, typically accompanied by interference between the wave forms produced.</span>
8 0
2 years ago
. A little car has a maximum acceleration of 2.57 m/s2. What is the new maximum acceleration of the little car if it tows anothe
valkas [14]

Answer:

a'=1.285\ m/s^2

Explanation:

Let m be the mass of a little car and m' be the mass of another car.

We know that,

Force = mass × acceleration

ATQ,

m × a = 2m × a'

a = 2 × a'

a'=\dfrac{a}{2}\\\\a'=\dfrac{2.57}{2}\\\\a'=1.285\ m/s^2

So, the acceleration of another little car is equal to 1.285\ m/s^2.

8 0
2 years ago
A pair of glasses is dropped from the top of a 32.0m stadium. A pen is dropped 2.Os later. How high above the ground is the pen
Svetllana [295]

Answer:

h_p = 30.46\ m

Explanation:

<u>Free Fall Motion</u>

A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.

The speed vf of the object when a time t has passed is given by:

v_f=g\cdot t

Where g = 9.8 m/s^2

Similarly, the distance y the object has traveled is calculated as follows:

\displaystyle y=\frac{g\cdot t^2}{2}

If we know the height h from which the object was dropped, we can solve the above equation for t:

\displaystyle t=\sqrt{\frac{2\cdot y}{g}}

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

\displaystyle t_1=\sqrt{\frac{2\cdot 32}{9.8}}=2.56\ sec

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

t_2=2.56 - 2 = 0.56\ sec

Therefore, it has traveled down a distance:

\displaystyle y=\frac{9.8\cdot 0.56^2}{2} = 1.54\ m

Thus, the height of the pen is:

h_p = 32 - 1.54\Rightarrow h_p=30.46\ m

8 0
2 years ago
An object initially at rest experiences a constant horizontal acceleration due to the action of a resultant force applied for 10
Marianna [84]

Answer:

a = 18.28 ft/s²

Explanation:

given,

time of force application, t= 10 s

Work = 10 Btu

mass of the object = 15 lb

acceleration, a =  ? ft/s²

1 btu = 778.15 ft.lbf

10 btu = 7781.5 ft.lbf

m = \dfrac{15}{32.174}\ slug

m = 0.466 slug

now,

work done  is equal to change in kinetic energy

W = \dfrac{1}{2} m (v_f^2-v_i^2)

7781.5 = \dfrac{1}{2}\times 0.466\times v_f^2

 v_f = 182.75\ ft/s

now, acceleration of object

  a = \dfrac{v_f-v_o}{t}

  a = \dfrac{182.75-0}{10}

         a = 18.28 ft/s²

constant acceleration of the object is equal to 18.28 ft/s²

3 0
2 years ago
a 100 kg gymnast comes to a stop after tumbling. her feet do -5000J of net work to stop her. Use the work-kinetic energy theorem
VikaD [51]
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j 
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s

6 0
2 years ago
Read 2 more answers
Other questions:
  • Find the acceleration of a forklift of mass 1400 kg pushed by a force of 2100 N that is opposed by friction force of 425 N
    9·1 answer
  • Which statements accurately describe mass? Check all that apply. Mass is a chemical property of an object. Mass is measured usin
    9·2 answers
  • An airplane flying parallel to the ground undergoes two consecutive dis- placements. The first is 75 km 30.0° west of north, and
    9·1 answer
  • A typical jet airliner has a cruise airspeed of 900 km/h , which is its speed relative to the air through which it is flying. If
    9·1 answer
  • An ideal solenoid 20 cm long is wound with 5000 turns of very thin wire. What strength magnetic field is produced at the center
    10·1 answer
  • A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from th
    6·1 answer
  • A charming friend of yours who has been reading a little bit about astronomy accompanies you to the campus observatory and asks
    14·1 answer
  • In a liquid with a density of 1050 kg/m3, longitudinal waves with a frequency of 450 Hz are found to have a wavelength of 7.90 m
    5·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
  • Use the idea of density to explain why the dead creatures sink to the seabed​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!