Answer:

Explanation:
Given that

We know that acceleration a given as




We know that



So the magnitude of force F

Centripetal force <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving. It is calculated by the expression:
F = mv^2/r
where m is the mass, v is the velocity and r is the radius.
F = 7.26(31.95)^2 / (1.215) = 6100 N</span>
Answer:
Explanation:
Impulse = change in momentum
mv - mu , v and u are final and initial velocity during impact at surface
For downward motion of baseball
v² = u² + 2gh₁
= 2 x 9.8 x 2.25
v = 6.64 m / s
It becomes initial velocity during impact .
For body going upwards
v² = u² - 2gh₂
u² = 2 x 9.8 x 1.38
u = 5.2 m / s
This becomes final velocity after impact
change in momentum
m ( final velocity - initial velocity )
.49 ( 5.2 - 6.64 )
= .7056 N.s.
Impulse by floor in upward direction
= .7056 N.s
How about a carousel (merry go round).
For any one horse or rider, Speed is constant but direction keeps changing, so velocity does too.
Answer:
4.988kW
Explanation:
According to the question, energy E extracted from the ocean breaker is directly proportional to the intensity I. It can be expressed mathematically as E ∝ I
E = kI where k is the constant of proportionality.
From the formula; k = E/I
This shows that increase in energy extracted will lead to increase in its intensity and vice versa.
If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high
E = 10kW and I = 1.20m
k = 10/1.20
k = 8.33kW/m
To know how much energy E that will be produced when they are 0.600 m high, we will use the same formula
k = E/I where;
k = 8.33kW/m
I = 0.600m
E = kI
E = 8.33 × 0.6
E = 4.998kW
The device will produce energy of 4.998kW when they are 0.600m high.