Answer:
a) diffraction
Explanation:
Diffraction occurs when waves pass through small openings, around obstacles or sharp edges.When an opaque object is between the point of light and a screen, the border between the shaded and illuminated regions on the screen is not defined. A careful inspection of the scrubber shows that a small amount of light is diverted to the shaded region. The region outside the shadow contains bright and dark altered bands, where the intensity of the first band is brighter than the region of uniform illumination.
Answer:
The velocity is 
Explanation:
From the question we are told that
The first distance is 
The first speed is 
The second distance is 
The second speed is 
Generally the time taken for first distance is



The time taken for second distance is



The total time is mathematically represented as

=> 
=> 
Generally the constant velocity that would let her finish at the same time is mathematically represented as

=> 
=> 
Answer:
630cm/s
Explanation:
In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr
ὦ is the angular velocity = 2πf
r is the radius of the disk
f is the frequency
Given the radius of disk = 10cm
frequency = 10Hz
v = 2πfr
v = 2π×10×10
v = 200π
v = 628.32 cm/s
The tangential velocity = 630cm/s ( to 2 significant figures)
Answer: 3 x 10^-24 watt
Explanation:
P ( resistivity) = 1.72e-8 (from the chart).
L= 2pi r
r= 30 cm.
R= pL/A
A= pi* r1^2
r1= 0.8118/2 * 10^-3 m
R= 1.68 x 10^-8 x (2x3.142x0.3)
= 3.24 x 10^-8
E=N do/dt
do= B* A
A= pi* 0.3^2
N=1
E = 1 x (14 x 3.142x 0.09) = 3.95
I=v/R
v=E,
I = 3.95 / 3.24 x 10^-8 = 1.22 x 10^8
P=I^2 x R.
= 3 x 10^-24 watt
Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s