Answer:900 feet
Explanation:
Given
Velocity 
it take 100 feet to stop
Using Equation of motion

where
v,u=Final and initial velocity
a=acceleration
s=distance moved


When velocity is 60 mph


s=900.08 feet
Answer:
The total mechanical energy does not change if the value of the mass is changed. That is, remain the same
Explanation:
The total mechanical energy of a spring-mass system is equal to the elastic potential energy where the object is at the amplitude of the motion. That is:
(1)
k: spring constant
A: amplitude of the motion = 2.0cm
As you can notice in the equation (1), the total mechanical energy of the system does not depend of the mass of the object. It only depends of the amplitude A and the spring constant.
Hence, if you use a mass of 0.40kg the total mechanical energy is the same as the obtained with a mas 0.20kg
Remain the same
Answer:
Radius of the solenoid is 0.93 meters.
Explanation:
It is given that,
The magnetic field strength within the solenoid is given by the equation,
, t is time in seconds

The induced electric field outside the solenoid is 1.1 V/m at a distance of 2.0 m from the axis of the solenoid, x = 2 m
The electric field due to changing magnetic field is given by :

x is the distance from the axis of the solenoid
, r is the radius of the solenoid


r = 0.93 meters
So, the radius of the solenoid is 0.93 meters. Hence, this is the required solution.
Acceleration, a = (v - u)/t
where v is the final velocity, u is the initial velocity, and t is the time.
This formula on a velocity time graph represents the slope of the graph.
1. In a single atom, no more than 2 electrons can occupy a single orbital? A. True
2. The maximum number of electrons allowed in a p sublevel of the 3rd principal level is?
B.6
3. A neutral atom has a ground state electronic configuration of 1s^2 2s^2. Which of the following statements concerning this atom is/are correct?
B. All of the above.