Can you translate that in English ? I'll try to help you out with that..
<span>14 m/s
Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration.
1. How much energy is stored in the spring?
2. How fast will the dart travel with that amount of energy.
As for the energy stored, that's a simple matter of multiplication. So:
20 N * 0.05 m = 1 Nm = 1 J
For the second part, the energy of a moving object is expressed as
KE = 0.5 mv^2
where
KE = Kinetic energy
m = mass
v = velocity
Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So
KE = 0.5 mv^2
1 J = 0.5 0.010 kg * v^2
1 kg*m^2/s^2 = 0.005 kg * v^2
200 m^2/s^2 = v^2
14.14213562 m/s = v
So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>
Coefficient of static friction = tan(a) = 0.4
r = 740 m
g = 9.8 m/s²

v = √(9.8 × 740 × 0.4) m/s
v ≈ 53.85908 m/s
Answer:
man upward acceleration is 0.14m/s^2
Explanation:
given data:
mass of man = 72 kg
downward force = 360 N
The mass of man of weight 72 kg is hang from two sections of rope, one section pf rope ties around man waist and other section is ties in man hands. when he pulls down the rope with 360 N force then each section of rope pulls with 360 N
we know that
Weight= mass × gravity= 72kg × 9.8 = 705.6N
Force = mass× acceleration
Force= -705.6 + (2 × 358) = 10.4 N

Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz