answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
1 year ago
5

What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.

Physics
1 answer:
andrew11 [14]1 year ago
6 0

Answer:

Explanation:

The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.

From the given  question, we are to determine the direction of the magnetic field bnet at a point A.

Also, having the notion that  the currents in the two wires have equal magnitudes, Then:

\bar{B_{net}} = \bar{B_1} + \bar{B_2}

\bar{B_{net}} = \frac{\mu_oI}{2 \pi r } \bar {k}+ \frac{\mu_oI}{2 \pi r } \bar {k}

\bar{B_{net}} = \frac{2 \mu_oI}{2 \pi r } \bar {k} \ out

Thus; \bar{B_{net}} points out of the screen at A.

You might be interested in
A container of volume 0.6 m^3 contains 5.3 mol of argon gas at 24°C. Assuming argon behaves as an ideal gas, find the total inte
Vitek1552 [10]

Answer:

the internal energy of the gas is 433089.52 J

Explanation:

let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.

the internal energy of an ideal gas is given by:

Ein = 3/2×n×R×T

     = 3/2×(5.3)×(8.31451)×(24 + 273)

     = 433089.52 J

Therefore, the internal energy of this gas is 433089.52 J.

5 0
1 year ago
A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
tensa zangetsu [6.8K]

Answer:

The number of turns is  N  = 1750 \ turns

Explanation:

From the question we are told that

  The inner radius is r_i =  12.0 \  cm  =  0.12 \  m

   The outer radius is  r_o =  15.0 \  cm  =  0.15 \  m

   The current it carries is I =  1.50 \  A

    The magnetic field is  B  =   3.75 mT = 3.75 *10^{-3} \  T

   The distance from the center is d =  14.0 \ cm  =  0.14 \  m

Generally the number of turns is mathematically represented as

    N  =  \frac{2 *  \pi  * d  *  B}{ \mu_o *  r_o }

Generally  \mu_o is the permeability of free space with value  

    \mu_o  =  4\pi * 10^{-7} \ N/A^2

So

  N  =  \frac{2 *  3.142   * 0.14 *  3.75 *10^{-3} }{ 4\pi * 10^{-7}  * 0.15  }

  N  = 1750 \ turns

5 0
1 year ago
An electric dipole with dipole moment p⃗ is in a uniform electric field E⃗ . A. Find all the orientation angles of the dipole me
Tasya [4]

Answer:

Explanation:

A) When a dipole is placed in an electric field , it experiences a torque equal to the following

torque = p x E = p E sinθ , where θ is angle between direction of p and E .

It will be zero if θ = 0

or if both p and E are oriented in the same direction.

It is the stable orientation of dipole.

If θ = 180° ,

Torque = 0

In this case both p and E are oriented in opposite direction .

It is the unstable orientation of the dipole because if we deflect the dipole by even small angle , it goes back to most stable orientation due to torque acting on it by electric field.

3 0
2 years ago
Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth.
marishachu [46]

Answer:

h=\frac{1}{2}\frac{v^2}{g}

Explanation:

Let's assume that an object is launched straight upward in a gravitational field. Its initial kinetic energy is given by

K=\frac{1}{2}mv^2 (1)

where m is the mass and v is the initial speed.

As the object goes higher, its kinetic energy decreases and it is converted into gravitational potential energy, since the total mechanical energy (sum of kinetic and potential energy) must remain constant:

E=K+U=const.

At the highest point of the trajectory, the speed of the object is zero (v=0), so the kinetic energy is also zero (K=0), which means that all the kinetic energy has been converted into potential energy:

U=mgh (2)

where g is the gravitational acceleration and h is the maximum height of the object.

Due to conservation of energy, we can write that (1) and (2) are equal, so:

\frac{1}{2}mv^2=mgh

from which we can derive an expression for the maximum height reached by the object

h=\frac{1}{2}\frac{v^2}{g}

5 0
1 year ago
Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an a
serious [3.7K]

To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.

We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.

Our data is given as:

\omega = 1.25 rad/s \rightarrow The angular speed

\alpha = 0.745 rad/s2 \rightarrow The angular acceleration

r = 4.65 m \rightarrow The distance

The relation between the linear velocity and angular velocity is

v = r\omega

Where,

r = Radius

\omega = Angular velocity

At the same time we have that the centripetal acceleration is

a_c = \frac{v^2}{r}

a_c = \frac{(r\omega)^2}{r}

a_c = \frac{r^2\omega^2}{r}

a_c = r \omega^2

a_c = (4.65 )(1.25 rad/s)^2

a_c = 7.265625 m/s^2

Now the tangential acceleration is given as,

a_t = \alpha r

Here,

\alpha = Angular acceleration

r = Radius

\alpha = (0.745)(4.65)

\alpha = 3.46425 m/s^2

Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be

|a| = \sqrt{a_c^2+a_t^2}

|a| = \sqrt{(7.265625)^2+(3.46425)^2}

|a| = 8.049 m/s^2 \approx 8.05 m/s2

Therefore the correct answer is C.

7 0
2 years ago
Other questions:
  • A driver uses his/her _____ vision to detect the motion from the sides
    9·1 answer
  • The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
    7·1 answer
  • A physics student stands on the rim of the canyon and drops a rock. The student measures the time for it to reach the bottom to
    6·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • The electric field 1.5 cm from a very small charged object points toward the object with a magnitude of 180,000 N/C. What is the
    14·2 answers
  • A metal has a strength of 414 MPa at its elastic limit and the strain at that point is 0.002. Assume the test specimen is 12.8-m
    7·1 answer
  • The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a
    13·1 answer
  • A solid sphere of mass 8.6 kg, made of metal whose density is 3,400 kg/, hangs by a cord. When the sphere is immersed in a liqui
    8·1 answer
  • A 12-V DC automobile head lamp is to be used on a fishing boat with a 24-V power system. The head lamp is rated at 50 W. A resis
    7·1 answer
  • On a straight road (taken to be in the +x direction) you drive for an hour at 50 km per hour, then quickly speed up to 90 km per
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!