Answer:
A driver.
Explanation:
Using a driver while at least 350 yds away is better than using a iron, because it will be a waste of the par 4 as it is not as powerful as the driver.
Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
Answer:
Mass, m = 2.2 kg
Explanation:
It is given that,
Frequency of the piano, f = 440 Hz
Length of the piano, L = 38.9 cm = 0.389 m
Tension in the spring, T = 667 N
The frequency in the spring is given by :

is the linear mass density
On rearranging, we get the value of m as follows :


m = 0.0022 kg
or
m = 2.2 grams
So, the mass of the object is 2.2 grams. Hence, this is the required solution.
Answer:
The acceleration of the rocket is 10 m/s².
Explanation:
Let the acceleration of the rocket be
m/s².
Given:
Mass of the rocket is, 
Thrust force acting upward is, 
Acceleration due to gravity is, 
Now, force acting in the downward direction is due to the weight of the rocket and is given as:

Now, net force acting on the rocket in upward direction is given as:

Therefore, from Newton's second law, net force acting on the rocket is equal to the product of mass and acceleration.

Therefore, the acceleration of the rocket is 10 m/s².