You would have to subtract 253 by 349 and you would get 96.
The answer would be negative charge because +, and - dont like each other so they retract from each other.
Answer: The comet's average distance from the sun is 17.6AU
Explanation:
From Kepler's 3rd Law, P^2=a^3
Where P is period in years
and a is length of semi-major axis or the average distance of the comet to the sun.
Given the orbital period to be 74 years
74^2 =a^3
5476 = a^3
Cube root of 5476 =a
17.626 = a
Approximately a= 17.6 AU
Answer:
A) F = - 8.5 10² N, B) I = 21 N s
Explanation:
A) We can solve this problem using the relationship of momentum and momentum
I = Δp
in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction
v₀ = 8.50 m / s
v_f = -8.50 m / s
F t = m v_f -m v₀
F =
let's calculate
F =
F = - 8.5 10² N
B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations
v² = v₀² - 2g (y- y₀)
as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0
v =
calculate
v =
v = 14 m / s
to calculate the momentum we use
I = Δp
I = m v_f - mv₀
when it hits the ground its speed drops to zero
we substitute
I = 1.50 (0-14)
I = -21 N s
the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is
I = 21 N s
Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.