Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
Answer:
The kinetic energy dissipated is 3286.5 J
Explanation:
K.E before collision = 1/2m1v1^2 = 1/2×313×6^2 = 5634 J
K.E after collision = 1/2(m1+m2)v2^2
From the law of conservation of momentum:
m1+m2 = m1v1/v2 = 313×6/2.5 = 751.2 kg
K.E after collision = 1/2×751.2×2.5^2 = 2347.5 J
K.E dissipated = 5634 J - 2347.5 J = 3286.5 J
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

The gravitational potential energy when it's at a height h from the zero reference is

The total mechanical energy is


The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

Operating in terms of m


Then we know the glider dives to 278 meters and we need to know their final speed, let's call it
. The final mechanical energy is

Operating and factoring

Both mechanical energies must be the same, so

Simplifying by m and rearranging

Computing

The glider's new speed is 68.90 m/s
Answer:

Explanation:
From the question we are told that
Length of spring 
Length of stretched 
Potential energy of spring 
Generally equation for energy stored is mathematically given as



Therefore value of the spring constant in N/m? is given as

Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution