answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
2 years ago
9

Derive an expression for the total mechanical energy of the system as the monkey reaches the top of the motion, Etop, in terms o

f m, x, d, k, the maximum height above the bottom of the motion, hmax, and the variables available in the palette.
Physics
1 answer:
ipn [44]2 years ago
8 0

Answer:

U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

Explanation:

Given:

- The extension in spring @ equilibrium = x m

- The spring constant = k

- The amount of distance pulled down = d

- mass of the toy = m

Find:

- The total mechanical energy E_top at the top position h_max in terms of the available variables.

Solution:

- First we need to determine the types of Energy that are in play:

- The Elastic potential Energy E_p in a spring is given:

                              E_p: 0.5 * k * (ext)

- In our case when the toy at the top most position h_max will have a net extension ext, by summing displacement of spring:

             ext = Equilibrium + distance pulled - h_max = (x + d - h_max)

Hence, the elastic potential energy will be:

                              E_p = 0.5 * k *(x + d - h_max)^2

- The gravitational potential energy E_g is given by:

                              E_g = m*g*h_max

Where, bottom most position is taken as reference (datum).

- The kinetic Energy E_k is given by:

                              E_k = 0.5*m*v_top^2

- Since we know that the maximum height is reached when velocity is zero

Hence,                   E_k = 0.5*m*0^2 = 0.

The total Energy of the system U is sum of all energies and play:

                               U = E_p + E_k + E_g

                               U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

You might be interested in
What will be the result of sea level rising, causing the ocean to fill a glacially carved valley?
Alex
Global warming is what will happen
7 0
2 years ago
An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving
liubo4ka [24]

The collision is a form of inelastic collision because the it forms a single mass after is collides. So it can be solve by momentum balance

( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06 kg ) v

V = 50 m/s

So the kinetic energy lost is

KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )

KE = 75 J

8 0
2 years ago
An engineer uses aluminum to build an airplane rather than composite materials that are lighter and stronger. He does this becau
AleksandrR [38]

Answer:

choosing a material that will show warning before it fails

Explanation:

According to my research on different architectural engineering techniques, I can say that based on the information provided within the question this is an example of choosing a material that will show warning before it fails. By choosing aluminum he can detect certain failures a long time before it actually happens since aluminum shows signs of wear and tear and doesn't just break immediately.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

4 0
2 years ago
Read 2 more answers
A small cylinder rests on a circular turntable that is rotating clockwise at a constant speed. Which set of vectors gives the di
I am Lyosha [343]

The question is missing the diagram. Also, the choices must have pictorial representation. So, I have attached the missing diagram and the pictorial representation of the vectors.

Answer:

The correct representation is attached below. Force and acceleration will be towards the center of rotation while the velocity will be along the tangent to the circular motion. <u>Option (D).</u>

Explanation:

From the figure, we can conclude the following points:

1. The cylinder is under a uniform circular motion as the circular table is moving at constant speed.

2. For a circular motion, velocity acts along the tangent to the circular path.

3. For a circular motion, centripetal force acts on the body that causes it move around a circular path.

4 The direction of the centripetal force is radially inward towards the center of rotation.

5. The centripetal force causes a centripetal acceleration acting on the body.

6. From Newton's second law, the net acceleration of a body is in the same direction as that of the net force acting on it. So, centripetal acceleration also acts in the radially inward direction.

Therefore, from the above conclusions, it is clear that velocity will act in the horizontal direction at the given instance of time and force and acceleration will act vertically down for the given instance.

This is shown in the picture below. The option (D).

4 0
2 years ago
A light bulb is shown below, shining into a concave mirror, with its original light lines visible. Which statement best explains
LuckyWell [14K]
<span>an object that appears black absorbs al color. an object that appears white reflects all colors.</span>
5 0
2 years ago
Other questions:
  • A car with mass 450 kg has a kinetic energy of 16,256 j. What is the speed of the car?
    9·1 answer
  • A 25.0-kg child plays on a swing having support ropes that are 2.20 m long. Her brother pulls her back until the ropes are 42.0°
    5·1 answer
  • The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the
    5·1 answer
  • A friend climbs an apple tree and drops a 0.22-kg apple from rest to you, standing 3.5 m below. When you catch the apple, you br
    11·1 answer
  • Select the statement that correctly completes the description of phase difference.
    10·1 answer
  • A magnetic dipole with a dipole moment of magnitude 0.0243 J/T is released from rest in a uniform magnetic field of magnitude 57
    13·2 answers
  • Determine the magnitude and sense (direction) of the current in the 500-latex: \omega ω resistor when i = 30 ma.
    7·1 answer
  • Calculate the kinetic energy of a motorcycle of mass 60kg travelling at a velocity of 40km/h​
    5·1 answer
  • 7. Imagine you are pushing a 15 kg cart full of 25 kg of bottled water up a 10o ramp. If the coefficient of friction is 0.02, wh
    8·1 answer
  • 2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!