answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
2 years ago
8

A 1000.–kilogram car traveling 20.0 meters per second east experiences an impulse of 2000. newton • seconds west. What is the fi

nal velocity of the car after the impulse has been applied?
Physics
1 answer:
emmainna [20.7K]2 years ago
5 0
Impulse is equal to change in momentum. So if impulse is 2000 then to solve for new velocity we just set it equal to equation for momentum.

First find original momentum by p=mv
p=1000*20=20000

So then taking that value minus the impulse since it was in opposite direction of original momentum it will slow it down some. To find new velocity we just take

20000-2000=18000=mv

v=18000/1000 =18m/s

Hope this helps!! Any questions please ask!!
Thank you!
You might be interested in
Moving water, like that of a river, carries sediment as it moves along its bed. The faster the water flows, the more sediment th
katovenus [111]

Correct option: A

An object remains at rest until a force acts on it.

As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.

3 0
2 years ago
Read 2 more answers
A large crate is suspended from the end of a vertical rope. Is the tension in the rope greater when the crate is at rest or when
choli [55]

Answer:

Part a)

the tension force is equal to the weight of the crate

Part b)

tension force is more than the weight of the crate while accelerating upwards

tension force is less than the weight of crate if it is accelerating downwards

Explanation:

Part a)

When large crate is suspended at rest or moving with uniform speed then it is given as

F_t - mg = ma

here since speed is constant or it is at rest

so we will have

a = 0

F_t = mg

so the tension force is equal to the weight of the crate

Part b)

Now let say the crate is accelerating upwards

now we can say

F_t - mg = ma

F_t = mg + ma

so tension force is more than the weight of the crate

Now if the crate is accelerating downwards

F_t - mg = -ma

F_t = mg - ma

so tension force is less than the weight of crate if it is accelerating downwards

4 0
2 years ago
After an eye examination, you put some eyedrops on your sensitive eyes. The cornea (the front part of the eye) has an index of r
mina [271]

Answer:

t = 103.45 n m

Explanation:

given,

refractive index of cornea = 1.38

refractive index of eye drop = 1.45

wavelength of refractive index = 600 nm

refractive index of eye drop is greater than refractive index of cornea and the air.

Formula used in this case

for constructive interference

2 n t = (m + \dfrac{1}{2})\lambda

At m = 0 for the minimum thickness, so

2\times 1.45 \times t = (0 + 0.5)\times 600

2.9 \times t =300

t =\dfrac{300}{2.9}

t = 103.45 n m

the minimum thickness of the film of eyedrops t = 103.45 n m

6 0
2 years ago
If a single constant force acts on an object that moves on a straight line, the object's velocity is a linear function of time.
olya-2409 [2.1K]

Answer:

F=mkv

Explanation:

Given that

v = v_i - kx

We know that acceleration a given as

a=\dfrac{dv}{dt}

v = v_i - kx

\dfrac{dv}{dt}=\dfrac{dv_i}{dt}-k\dfrac{dx}{dt}

\dfrac{dv}{dt}=0-k\dfrac{dx}{dt}

We know that

F=m\dfrac{dv}{dt}

F=-mk\dfrac{dx}{dt}

F=-mkv

So the magnitude of force F

F=mkv

5 0
2 years ago
Two electrodes, separated by a distance d, in a vacuum are maintained at a constant potential difference. An electron, accelerat
Alja [10]

Answer:

Explanation:

Given that, the distance between the electrode is d.

The electron kinetic energy is Ek when the electrode are at distance "d" apart.

So, we want to find the K.E when that are at d/3 distance apart.

K.E = ½mv²

Note: the mass doesn't change, it is only the velocity that change.

Also,

K.E = Work done by the electron

K.E = F × d

K.E = W = ma × d

Let assume that if is constant acceleration

Then, m and a is constant,

Then,

K.E is directly proportional to d

So, as d increase K.E increase and as d decreases K.E decreases.

So,

K.E_1 / d_1 = K.E_2 / d_2

K.E_1 = E_k

d_1 = d

d_2 = d/3

K.E_2 = K.E_1 / d_1 × d_2

K.E_2 = E_k × ⅓d / d

Then,

K.E_2 = ⅓E_k

So, the new kinetic energy is one third of the E_k

7 0
2 years ago
Other questions:
  • Can a force directed north balance a force directed east
    14·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • Which of the following statements is correct? Which of the following statements is correct? The more a muscle shortens, the more
    5·1 answer
  • You are driving to the grocery store at 20 m/s. You are 110m from an intersection when the traffic light turns red. Assume that
    14·1 answer
  • A 125-g metal block at a temperature of 93.2 °C was immersed in 100. g of water at 18.3 °C. Given the specific heat of the metal
    14·1 answer
  • Assuming that you remain a finite distance from the origin, where in the X-Y plane could a point charge Q be placed, so that thi
    5·1 answer
  • A 2.5 m -long wire carries a current of 8.0 A and is immersed within a uniform magnetic field B⃗ . When this wire lies along the
    11·1 answer
  • The electric potential in a region that is within 2.00 mm of the origin of a rectangular coordinate system is given by V=Axl+Bym
    5·1 answer
  • A quarterback passes a football from height h = 2.1 m above the field, with initial velocity v0 = 13.5 m/s at an angle θ = 32° a
    9·1 answer
  • Two astronauts, A and B, both with mass of 60Kg, are moving along a straight line in the same direction in a weightless spaceshi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!