answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
2 years ago
9

How many electrons does 1.00 kg of water contain?

Physics
1 answer:
frozen [14]2 years ago
3 0

Answer:

6 x (10)^26 electrons.

Explanation:

1 mole = 18 gr

1 gm =1/18 mole

1 kg = 1000/18 mole

Now , 1 mole of any compound = 6.022 x (10)^23 atoms.

Therefore, 1 kg of H20= (1000/18)*(6.022 x (10)^23) atoms

Roughly , 3.34 x (10)^25 molecules

And each molecule has 18 electrons

Therefore, 6 x (10)^26 electrons.

Thank you.

You might be interested in
Lightning results from ________.
just olya [345]
An imbalance between electrical charges
8 0
2 years ago
A rigid tank contains nitrogen gas at 227 °C and 100 kPa gage. The gas is heated until the gage pressure reads 250 kPa. If the a
aleksley [76]

Answer:

 T₂ =602  °C

Explanation:

Given that

T₁ = 227°C =227+273 K

T₁ =500 k

Gauge pressure at condition 1 given = 100 KPa

The absolute pressure at condition 1 will be

P₁ = 100 + 100 KPa

P₁ =200 KPa

Gauge pressure at condition 2 given = 250 KPa

The absolute pressure at condition 2 will be

P₂ = 250 + 100 KPa

P₂ =350 KPa

The temperature at condition 2 = T₂

We know that

\dfrac{T_2}{T_1}=\dfrac{P_2}{P_1}\\T_2=T_1\times \dfrac{P_2}{P_1}\\T_2=500\times \dfrac{350}{200}\ K\\

T₂ = 875 K

T₂ =875- 273 °C

T₂ =602  °C

5 0
2 years ago
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±qseparated by a distance s. T
atroni [7]

Answer:

The magnitude of the force on the dipole due to the charge Q = \rm \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi }\dfrac{2qQs}{r^3}.

The magnitude of the torque on the dipole = \rm \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi}\dfrac{2qQs^2}{r^3}.

Explanation:

Given that a point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q, separated by a distance s and the charge Q is located in the plane that bisects the dipole.

The magnitude of the electric field that the dipole exerts at the position where the charge Q is held is given by

\rm E = \dfrac{k2qs}{(r^2+s^2)^{3/2}}.

<em>where</em>,

k is the Coulomb's constant, having value = \dfrac{1}{4\pi \epsilon_o}

\epsilon_o is the electrical permittivity of free space.

Also, r>>s, therefore, \rm r^2+s^2\approx r^2.

\rm E = \dfrac{k2qs}{(r^2)^{3/2}}=\dfrac{k2qs}{r^3}.

The magnitude of the electric force F on a charge q placed at a point and the magnitude of the electric field E at that point are related as

\rm F=qE

Therefore, the electric force on the charge Q due to the dipole is given by

\rm F=Q\dfrac{k2qs}{r^3}=\dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs}{r^3}.

According to Newton's third law of motion, the magnitude of the force exerted by the dipole on the charge Q is same as the magnitude of the force exerted by the charge on the dipole.

Thus, the magnitude of the force on the dipole due to the charge Q = \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi }\dfrac{2qQs}{r^3}.

The magnitude of the torque on the dipole is given by

\rm \tau = Fs\ \sin\theta

Since the charge Q is placed in the plane that bisects the dipole, therefore, \theta = 90^\circ.

\rm \tau = \dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs}{r^3}\cdot s\cdot 1=\dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs^2}{r^3}.

4 0
2 years ago
The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a
Lunna [17]

Answer:

The change in power is 4400 W.

Explanation:

Given that,

Power = 10 kW

Speed = 10 m/s

Increases speed = 12 m/s

Given equation is,

F=kv

We know that,

The power is,

P=Fv

Put the value of F into the formula

P=(kv)v

P=kv^2

P\propto v^2

We need to calculate the new power

Using formula for power

\dfrac{P}{P'}=\dfrac{v^2}{v'^2}

Put the value into the formula

\dfrac{10}{P'}=(\dfrac{10}{12})^2

P'=(\dfrac{12}{10})^2\times10

P'=14.4\ kW

We need to calculate the change in power

Using formula of change in power

\Delta P=P'-P

Put the value into the formula

\Delta P=14.4-10

\Delta P=4.4\ kW

\Delta P=4.4\times1000

\Delta P=4400\ W

Hence, The change in power is 4400 W.

6 0
3 years ago
An empty container is filled with helium to a pressure P at a temperature T. Neon, which has atoms that are 5 times more massive
Law Incorporation [45]

Answer:

I got the same test question I picked c

4 0
2 years ago
Read 2 more answers
Other questions:
  • An object of mass 5 kilograms is moving across a surface in a straight line with a speed of 3.5 meters/second. What amount of fo
    11·1 answer
  • Find the object's speeds v1, v2, and v3 at times t1=2.0s, t2=4.0s, and t3=13s.
    6·2 answers
  • In which scenario is an animal doing work? Check all that apply.
    15·2 answers
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m&gt;s relative to an orbiting space shuttle
    10·1 answer
  • Greg walks on a straight road from his home to a convenience store 3.0 km away with a speed of 6.0 km/h. On reaching the store h
    5·2 answers
  • A force of only 150 N can lift a 600 N sack of flour to a height of 0.50 m when using a lever as shown in the diagram below. a.
    10·1 answer
  • An automobile is traveling at a constant 15 m/s, then it undergoes acceleration from that moment forward. Which statement best d
    7·1 answer
  • Four rods that obey Hooke's law are each put under tension. (a) A rod 50.0 cm50.0 cm long with cross-sectional area 1.00 mm21.00
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!