Answer:
1027.2 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 32.2 ft/s


The height the tomato would fall is 450+577.2 = 1027.2 m
Answer: displacement of airplane is 172 km in direction 34.2 degrees East of North
Explanation:
In constructing the two displacements it is noticed that the angle between the 75 km vector and the 155 km vector is a right angle (90 degrees).
Hence if the plane starts out at A, it travels to B, 75 km away, then turns 90 degrees to the right (clockwise) and travels to C, 155 km away from B. Angle ABC is 90 degrees, hence we can use Pythagoras theorem to solve for AC
AC2 = AB2 + BC2 ; AC^2 = 752 + 1552 ; from this we get AC = 172 km (3 significant figures)
Angle BAC = Tan-1(155/75) ; giving angle BAC = 64.2 degrees
Hence AC is in a direction (64.2 - 30) = 34.2 degrees East of North
Therefore the displacement of the airplane is 172 km in a direction 34.2 degrees East of North
Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Answer:
h=20.66m
Explanation:
First we need the speed when the cord starts stretching:


This will be our initial speed for a balance of energy.
By conservation of energy:

Where
is your height at its maximum elongation
is the height of the bridge
is the length of the unstretched bungee cord

Solving for h:
and
Since 99m is higher than the initial height of 79m, we discard that value.
So, the final height above water is 20.66m