Answer:
w = √ 1 / CL
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
Explanation:
This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.
In these circuits the impedance is
X = √ (R² + (
-
)² )
where Xc and XL is the capacitive and inductive impedance, respectively
X_{C} = 1 / wC
X_{L} = wL
From this expression we can see that for the resonance frequency
X_{C} = X_{L}
the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
V = IR
Since the contribution of the two other components is canceled, this occurs for
X_{C} = X_{L}
1 / wC = w L
w = √ 1 / CL
Answer:d
Explanation:
Spring is compressed to a distance of x from its equilibrium position
Work done by block on the spring is equal to change in elastic potential energy
i.e. Work done by block 
therefore spring will also done an equal opposite amount of work on the block in the absence of external force
Thus work done by spring on the block 
Thus option d is correct
k = spring constant of the spring = 85 N/m
m = mass of the box sliding towards the spring = 3.5 kg
v = speed of box just before colliding with the spring = ?
x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m
the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.
Using conservation of energy
Kinetic energy of spring before collision = spring energy of spring after compression
(0.5) m v² = (0.5) k x²
m v² = k x²
inserting the values
(3.5 kg) v² = (85 N/m) (0.065 m)²
v = 0.32 m/s
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:
