Answer:
Pressure is equal to the ratio of thrust to the area in contact. Upthrust is a force exerted by the fluids on an object placed in the fluid . Upthrust acts in upward direction.
Answer:
Amplitude, A = 0.049 meters
Explanation:
Given that,
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :
.......(1)
The general equation of a wave is given by :
.......(2)
A is amplitude of wave
On comparing equation (1) and (2) we get :
A = 0.049 meters
So, the amplitude of the wave is 0.049 meters.
The appropriate response is accretion disk. It is a structure (regularly a circumstellar circle) shaped by diffused material in orbital movement around a monstrous focal body. The focal body is regularly a star. Gravity makes the material in the plate winding internal towards the focal body.
Answer:
t = 2.68 x 10¹⁴ years
Explanation:
First we need to find the amount of energy that Sun produce in one day.
Energy = Power * Time
Energy of Sun in 1 day = (3.839 x 10²⁶ W)(1 day)(24 hr/1 day)(3600 s/ 1 hr)
Energy of Sun in 1 day = 3.32 x 10³¹ J
Now, the time required by the nuclear power generator, in years, will be:
Energy of power generator = Energy Sun in 1 day = 3.32 x 10³¹ J
3.32 x 10³¹ J = Power * Time
3.32 x 10³¹ J = (3.937 x 10⁹ W)(t years)(365 days/1 year)(24 hr/1 day)(3600 s/ 1 hr)
t = 3.32 x 10³¹ /1.24 x 10¹⁷
<u>t = 2.68 x 10¹⁴ years</u>
Since the temperature of the gas remains constant in the process, we can use Boyle's law, which states that for a gas transformation at constant temperature, the product between the gas pressure and its volume is constant:

which can also be rewritten as

(1)
where the labels 1 and 2 mark the initial and final conditions of the gas.
In our problem,

,

and

, so the final pressure of the gas can be found by re-arranging eq.(1):

Therefore the correct answer is
<span>1. 0.75 atm</span>