Answer:
μ = 0.535
Explanation:
On a level floor, normal force = weight.
N = W
Friction force = normal force × coefficient of friction.
F = Nμ
Substitute:
F = Wμ
83 = 155μ
μ = 0.535
Round as needed.
Answer:
a) v = 75 ft / s
, b) v = 55 ft / s
, c) Δx = 1000 ft
Explanation:
We can solve this exercise with the expressions of kinematics
a) average speed is defined as the distance traveled in a given time interval
v = (x₂-x₁) / (t₂-t₁)
v = (550 - 400) / (10 -8)
v = 75 ft / s
b) we repeat the calculations for this interval
v = (550 - 0) / (10 -0)
v = 55 ft / s
c) we clear the distance from the average velocity equation
Δx = v (t₂ -t₁)
Δx = 100 (20-10)
Δx = 1000 ft
Answer:
the rms speed of cesium atoms that have been cooled to a temperature of 100nK = 0.43cm/s or 0.0043m/s
Explanation:
The concept of root mean square velocity is applied, where the average translational kinetic is related to the actual kinetic energy, the expression for the root mean square is the generated.
The detailed steps and appropriate substitution is as shown in the attachment.
okay this is kinda easy
<u>What is the gravitational field strength on the moon?</u>
The Moon has a gravitational field strength of 1.6 N/kg.
In collision type of problems since momentum is always conserved
we can say

So here along with this equation we also required one more equation for the restitution coefficient

so above two equations are required to find the velocity after collision
here the change in velocity occurs due to the contact force while they contact in each other
so this is the impulse of collision while they are in contact with each other while in collision which changes the velocity of two colliding objects