Answer:
v_avg = 2.9 cm/s
Explanation:
The average velocity of the object is the sum of the distance of all its trajectories divided the time:

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm
Then, x_all = 150cm + 140cm = 290cm
The average velocity is, for t = 100s

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s
Answer:
x = 1,185 m
, t = 4/3 s
, F = - 4 N
Explanation:
For this exercise we use Newton's second law
F = m a = m dv /dt
β - α t = m dv / dt
dv = (β – α t) dt
We integrate
v = β t - ½ α t²
We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t
v-v₀ = β t - ½ α t²
the farthest point of the body is when v = v₀ = 0
0 = β t - ½ α t²
t = 2 β / α
t = 2 4/6
t = 4/3 s
Let's find the distance at this time
v = dx / dt
dx / dt = v₀ + β t - ½ α t2
dx = (v₀ + β t - ½ α t2) dt
We integrate
x = v₀ t + ½ β t - ½ 1/3 α t³
x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³
The body comes out of rest
x = 3.5556 - 2.37
x = 1,185 m
The value of force is
F = β - α t
F = 4 - 6 4/3
F = - 4 N
Answer:
y = 54.9 m
Explanation:
For this exercise we can use the relationship between the work of the friction force and mechanical energy.
Let's look for work
W = -fr d
The negative sign is because Lafourcade rubs always opposes the movement
On the inclined part, of Newton's second law
Y Axis
N - W cos θ = 0
The equation for the force of friction is
fr = μ N
fr = μ mg cos θ
We replace at work
W = - μ m g cos θ d
Mechanical energy in the lower part of the embankment
Em₀ = K = ½ m v²
The mechanical energy in the highest part, where it stopped
= U = m g y
W = ΔEm =
- Em₀
- μ m g d cos θ = m g y - ½ m v²
Distance d and height (y) are related by trigonometry
sin θ = y / d
y = d sin θ
- μ m g d cos θ = m g d sin θ - ½ m v²
We calculate the distance traveled
d (g syn θ + μ g cos θ) = ½ v²
d = v²/2 g (sintea + myy cos tee)
d = 9.8 12.6 2/2 9.8 (sin16 + 0.128 cos 16)
d = 1555.85 /7.8145
d = 199.1 m
Let's use trigonometry to find the height
sin 16 = y / d
y = d sin 16
y = 199.1 sin 16
y = 54.9 m