Answer:
- 1 m/s, 20 m
Explanation:
u = 9 m/s, a = - 2 m/s^2, t = 5 sec
Let s be the displacement and v be the velocity after 5 seconds
Use first equation of motion.
v = u + a t
v = 9 - 2 x 5 = 9 - 10 = - 1 m/s
Use second equation of motion
s = u t + 1/2 a t^2
s = 9 x 5 - 1/2 x 2 x 5 x 5
s = 45 - 25 = 20 m
(D) The gravitational force between the astronaut and the asteroid.
Reason :
All the other forces given in the options, except (D), doesn't account for the motion of the astronaut. They are the forces that act between nucleons or atoms and neither of them accounts for an objects motion.
(a) Both the girl and the boy have the same nonzero angular displacement.
Explanation:
The angular displacement of an object moving in uniform circular motion, as the boy and the girl on the merry-go-round, is given by

where
is the angular speed
t is the time interval
For a uniform object in uniform circular motion, all the points of the object have same angular speed. This means that the value of
is the same for the boy and the girl.
Therefore, if we consider the same time interval t, the boy and the girl will also have same nonzero angular displacement.
(b) The girl has greater linear speed.
Explanation:
The linear (tangential) speed of a point along the merry-go-round is given by

where
is the angular speed
r is the distance of the point from the centre of the merry-go-round
In this problem, the girl is near the outer edge, while the boy is closer to the centre: since the value of
is the same for both, this means that the value of r is larger for the girl, so the girl will also have a greater linear speed.
Answer:
74.52s
Explanation:
The solution is shown in the picture below
Answer:
Check the explanation
Explanation:
To tackle situations like the one above, the rate of gravity of that star must be equal to the rate of power output but we don’t have radius of that star. Also temp is not mentioned. And emissivity of star is also not mentioned. So the only possible way is like Einstein mass energy relationship E=mc^2=6.5380e40
power =E/Time so this energy is transferred per sec.