answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
2 years ago
12

A fisherman has caught a very large, 5.0kg fish from a dock that is 2.0m above the water. He is using lightweightfishing line th

at willbreak under a tension of 54N or more. He is eager to the fish to the dock in the shortest time possible. If the fish is at rest at the water's surface, what is the least amount of time in which the fisherman can raise the fish to the dock without losing it?
Physics
1 answer:
agasfer [191]2 years ago
7 0

Answer:

t = 2 s

Explanation:

As we know that fish is pulled upwards with uniform maximum acceleration

then we will have

T - mg = ma

here we know that maximum possible acceleration of so that string will not break is given as

T = 54 N

now we have

54 - (5 \times 9.8) = 5 a

a = 1 m/s^2

now for such acceleration we can use kinematics

d = \frac{1}{2}at^2

2 = \frac{1}{2}(1) t^2

t = 2 s

You might be interested in
The Lamborghini Huracan has an initial acceleration of 0.80g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode al
irina [24]

Answer:

a = 15.1 g

Explanation:

The relation between mass and acceleration is given by :

m\propto \dfrac{1}{a}

If a₁ = 0.80g, m₁ = 1510 kg, m₂ = 80 kg, we need to find a₂

So,

\dfrac{m_1}{m_2}=\dfrac{a_2}{a_1}\\\\a_2=\dfrac{a_1m_1}{m_2}\\\\a_2=\dfrac{0.8g\times 1510}{80}\\\\a_2=15.1g

So, the car's acceleration would be 15.1 g.

6 0
1 year ago
Which best describes the importance of mitosis to living organisms? genetic variation and growth growth and development developm
Scrat [10]

Answer:

b.

Explanation:

Mitosis is important for growth and development  of living organisms.

8 0
1 year ago
Two students ride in cart opposite to one another in a spinning Ferris wheel
jeka57 [31]

Answer:

okay what do i answer

Explanation:

7 0
2 years ago
Water at 20°C flows by gravity through a smooth pipe from one reservoir to a lower one. The elevation difference is 60 m. The pi
Serga [27]

Answer:

Flow Rate = 80 m^3 /hours  (Rounded to the nearest whole number)

Explanation:

Given

  • Hf = head loss
  • f = friction factor
  • L = Length of the pipe = 360 m
  • V = Flow velocity, m/s
  • D = Pipe diameter = 0.12 m
  • g = Gravitational acceleration, m/s^2
  • Re = Reynolds's Number
  • rho = Density =998 kg/m^3
  • μ = Viscosity = 0.001 kg/m-s
  • Z = Elevation Difference = 60 m

Calculations

Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)

The energy equation for this system will be,

Hp = Z + Hf

The other three equations to solve the above equations are:

Re = (rho*V*D)/ μ

Flow Rate, Q = V*(pi/4)*D^2

Power = 15000 W = rho*g*Q*Hp

1/f^0.5 = 2*log ((Re*f^0.5)/2.51)

We can iterate the 5 equations to find f and solve them to find the values of:

Re = 235000

f = 0.015

V = 1.97 m/s

And use them to find the flow rate,

Q = V*(pi/4)*D^2

Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours

7 0
2 years ago
What is the gauge pressure of the water right at the point p, where the needle meets the wider chamber of the syringe? neglect t
Helen [10]

Missing details: figure of the problem is attached.

We can solve the exercise by using Poiseuille's law. It says that, for a fluid in laminar flow inside a closed pipe,

\Delta P =  \frac{8 \mu L Q}{\pi r^4}

where:

\Delta P is the pressure difference between the two ends

\mu is viscosity of the fluid

L is the length of the pipe

Q=Av is the volumetric flow rate, with A=\pi r^2 being the section of the tube and v the velocity of the fluid

r is the radius of the pipe.

We can apply this law to the needle, and then calculating the pressure difference between point P and the end of the needle. For our problem, we have:

\mu=0.001 Pa/s is the dynamic water viscosity at 20^{\circ}

L=4.0 cm=0.04 m

Q=Av=\pi r^2 v= \pi (1 \cdot 10^{-3}m)^2 \cdot 10 m/s =3.14 \cdot 10^{-5} m^3/s

and r=1 mm=0.001 m

Using these data in the formula, we get:

\Delta P = 3200 Pa

However, this is the pressure difference between point P and the end of the needle. But the end of the needle is at atmosphere pressure, and therefore the gauge pressure (which has zero-reference against atmosphere pressure) at point P is exactly 3200 Pa.

8 0
1 year ago
Other questions:
  • What fraction of a piece of concrete will be submerged when it floats in mercury? the density of concrete is 2.3×103kg/m3 and de
    7·1 answer
  • A system absorbs 52 joules of heat and does work using 25 joules of energy. What is the change in the internal energy of the sys
    6·2 answers
  • Your friend states in a report that the average time required to circle a 1.5-mi track was 65.414 s. This was measured by timing
    15·1 answer
  • A 3.5-cm radius hemisphere contains a total charge of 6.6 × 10–7
    14·1 answer
  • In 2014, about how far in meters would you have to travel on the surface of the Earth from the North Magnetic Pole to the Geogra
    5·1 answer
  • The moon has a mass of 7.4 × 1022 kg and completes an orbit of radius 3.8×108 m about every 28 days. The Earth has a mass of 6 ×
    15·1 answer
  • 3. If you are playing seesaw with your younger sister who weighs
    7·1 answer
  • If Anya decides to make the star twice as massive, and not change the length of any crossbar or the location of any object, what
    10·1 answer
  • You and your brother argue often about how to safely secure a toddler in a moving car. You insist that special toddler seats are
    7·1 answer
  • A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!