answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
2 years ago
12

A fisherman has caught a very large, 5.0kg fish from a dock that is 2.0m above the water. He is using lightweightfishing line th

at willbreak under a tension of 54N or more. He is eager to the fish to the dock in the shortest time possible. If the fish is at rest at the water's surface, what is the least amount of time in which the fisherman can raise the fish to the dock without losing it?
Physics
1 answer:
agasfer [191]2 years ago
7 0

Answer:

t = 2 s

Explanation:

As we know that fish is pulled upwards with uniform maximum acceleration

then we will have

T - mg = ma

here we know that maximum possible acceleration of so that string will not break is given as

T = 54 N

now we have

54 - (5 \times 9.8) = 5 a

a = 1 m/s^2

now for such acceleration we can use kinematics

d = \frac{1}{2}at^2

2 = \frac{1}{2}(1) t^2

t = 2 s

You might be interested in
Two forces F1 and F2 act on a 5.00 kg object. Taking F1=20.0N and F2=15.00N, find the acceleration of the object for the configu
Anit [1.1K]
A) mass m with F1 acting in the positive x direction and F2 acting perpendicular in the positive y direction<span>

m = 5.00 kg
F1=20.0N  ... x direction
F2=15.00N</span><span>  ... y direction

Net force ^2 = F1^2 + F2^2 = (20N)^2 + (15n)^2 =  625N^2 =>

Net force = √625 = 25N

F = m*a => a = F/m = 25.0 N /5.00 kg = 5 m/s^2

Answer: 5.00 m/s^2

b) mass m with F1 acting in the positive x direction and F2 acting on the object at 60 degrees above the horizontal. </span>

<span>m = 5.00 kg
F1=20.0N  ... x direction
F2=15.00N</span><span>  ... 60 degress above x direction

Components of F2

F2,x = F2*cos(60) = 15N / 2 = 7.5N

F2, y = F2*sin(60) = 15N* 0.866 = 12.99 N ≈ 13 N


Total force in x = F1 + F2,x = 20.0 N + 7.5 N = 27.5 N

Total force in y = F2,y = 13.0 N

Net force^2 = (27.5N)^2 + (13.0N)^2 = 925.25 N^2 = Net force = √(925.25N^2) =

= 30.42N

a = F /m = 30.42 N / 5.00 kg = 6.08 m/s^2

Answer: 6.08 m/s^2


</span>
8 0
2 years ago
Read 2 more answers
It takes a slug 20 minutes to travel from the grass to the trash can , a trip of 15 meters. How far could the slug travel in 60
inn [45]

Answer:

45 meters

Explanation:

20 min = 15 meters

So if 20 x 3 = 60

you have to do 3 x 15 !

- which equals to 45 <3

<u>- mark me brainlest pls . </u>

5 0
2 years ago
Argon in the amount of 1.5 kg fills a 0.04-m3 piston cylinder device at 550 kPa. The piston is now moved by changing the weights
Arlecino [84]

Answer:

               275 kPa

Explanation:

             mass of the gas=m=1.5 kg

             initial volume if the gas=V₁=0.04 m³

             initial pressure of the gas= P₁=550 kPa

as the condition is given final volume is double the initial volume

             V₂=final volume

             V₂=2 V₁

As the temperature is constant

             T₁=T₂=T

\frac{P1V1}{T1}=\frac{P2 V2}{T2}

putting the values in the equation.

\frac{P1V1}{T1}=\frac{P2 *2V1}{T2}

P₂=\frac{P1}{2}

P₂=\frac{550}{2}

P₂=275 kPa

So the final pressure of the gas is 275 kPa.

           

3 0
2 years ago
A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp
Ahat [919]

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

5 0
2 years ago
Read 2 more answers
You place a 500 g block of an unknown substance in an insulated container filled 2 kg of water. The block has an initial tempera
Nina [5.8K]

Answer:

3349J/kgC

Explanation:

Questions like these are properly handled having this fact in mind;

  • Heat loss = Heat gained

Quantity of heat = mcΔ∅

m = mass of subatance

c = specific heat capacity

Δ∅ = change in temperature

m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)

m₁ = mass of block = 500g = 0.5kg

c₁  = specific heat capacity of unknown substance

∅₂ = block initial temperature = 50oC

∅₁ = equilibrium temperature of block and water after mix= 25oC

m₂= mass of water = 2kg

c₂ = specific heat capacity of water = 4186J/kg C

∅₃ = intial temperature of water = 20oC

0.5c₁(50-25) = 2 x 4186(25-20)

And we can find c₁ which is the unknown specific heat capacity

c₁ = \frac{2*4186*5}{0.5*25}= 3348.8J/kg C≅ 3349J/kg C

4 0
2 years ago
Other questions:
  • Argelia has a stack of schoolbooks sitting in the backseat of her car. When Argelia makes a sharp right turn, the books slide to
    11·2 answers
  • A vector A is added to B=6i-8j. The resultant vector is in the positive x direction and has a magnitude equal to A . What is the
    12·2 answers
  • Determine the number of unpaired electrons in the octahedral coordination complex [fex6]3–, where x = any halide.
    14·1 answer
  • Un ladrillo se le imparte una velocidad inicial de 6m/s en su trayectoria hacia abajo. ¿cual sera su velocidad final despues de
    9·1 answer
  • What factors affect attractive force
    14·2 answers
  • 2. A pebble is dropped down a well and hits the water 1.5 s later. Using the equations for motion with constant acceleration, de
    14·1 answer
  • A runner generates 1260 W of thermal energy. If this heat has to be removed only by evaporation, how much water does this runner
    8·1 answer
  • A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
    7·1 answer
  • Suppose that air resistance cannot be ignored. For the position at which the person has jumped from the platform and the cord re
    8·1 answer
  • A Body OF Volume 36cc Floats With 3/4 of its volume submerged in water . The density Of Body is
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!