I will discuss what is a gravitational force since no figures are attached or given. An objects weight is dependent upon its location in the universe
because they exhibit gravitational waves. For example, the earth is a massive
planet. Because of its massiveness, it exhibits a strong gravitational force
within it. In turn, the objects near the earth will be attracted to it and
thereby feels a much stronger gravity on earth. That is why bodies of water,
despite its liquid features, stick to the earth. The heavier the body is, the
stronger its gravitational pull. Another example is the Milky Way Galaxy, there is a
gravitational pull because it is to other galaxies. Also, other galaxies are
heavier than the earth and therefore, it is attracted to the Milky Way galaxy
because of its gravitational pull.
The climber move 0.19 m/s faster than surfer on the nearby beach.
Since both the person are on the earth, and moves with the constant angular velocity of earth, however there linear velocity is different.
Number of seconds in a day, t=24*60*60=86400 sec
The linear speed on the beach is calculated as
V1=
Here, t is the time
Plugging the values in the above equation
V1=
=465.421 m/s
Velocity on the mountain is calculated as
V2=
Plugging the values in the above equation
V2=
=465.61 m/s
Therefore person on the mountain moves faster than the person on the beach by 465.61-465.421=0.19 m/s
The forces acting on the ball, aside from air friction, would be the force exerted on the ball by the boy when he threw it up, and gravity working against the motion of the ball
Answer:
the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Explanation:
Given the data in the question;
To determine the maximum intensity of an electromagnetic wave, we use the formula;
=
ε₀cE
²
where ε₀ is permittivity of free space ( 8.85 × 10⁻¹² C²/N.m² )
c is the speed of light ( 3 × 10⁸ m/s )
E
is the maximum magnitude of the electric field
first we calculate the maximum magnitude of the electric field ( E
)
E
= 350/f kV/m
given that frequency of 60 Hz, we substitute
E
= 350/60 kV/m
E
= 5.83333 kV/m
E
= 5.83333 kV/m × (
)
E
= 5833.33 N/C
so we substitute all our values into the formula for intensity of an electromagnetic wave;
=
ε₀cE
²
=
× ( 8.85 × 10⁻¹² C²/N.m² ) × ( 3 × 10⁸ m/s ) × ( 5833.33 N/C )²
= 45 × 10³ W/m²
= 45 × 10³ W/m² × (
)
= 45 kW/m²
Therefore, the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
The variation of momentum (= the impulse) of the car during the impact is


does not change whether the car has an airbag or not, because
and 1) the mass of the car is always the same 2) the change in velocity of the car is always the same,
so if

is constant and F is reduced by a factor 110, then

(the duration of the collision) must be increased by a factor 110 with the airbag.