answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
2 years ago
14

Which of the following is probably not a reason why society might initially reject a new scientific theory

Physics
1 answer:
Tanzania [10]2 years ago
6 0
A. Evidence that supports the theory
You might be interested in
The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
ankoles [38]

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = = \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})

kinetic energy = = \frac{1}{2}*4*(1.5^{2}-11^{2}) = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

7 0
2 years ago
Two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Initially ball A is mov
frez [133]

Answer:

Speed of ball A after collision is 3.7 m/s

Speed of ball B after collision is 2 m/s

Direction of ball A after collision is towards positive x axis

Total momentum after collision is m×4·21 kgm/s

Total kinetic energy after collision is m×8·85 J

Explanation:

<h3>If we consider two balls as a system as there is no external force initial momentum of the system must be equal to the final momentum of the system</h3>

Let the mass of each ball be m kg

v_{1} be the velocity of ball A along positive x axis

v_{2} be the velocity of ball A along positive y axis

u be the velocity of ball B along positive y axis

Conservation of momentum along x axis

m×3·7 = m× v_{1}

∴  v_{1} = 3.7 m/s along positive x axis

Conservation of momentum along y axis

m×2 = m×u + m× v_{2}

2 = u +  v_{2} → equation 1

<h3>Assuming that there is no permanent deformation between the balls we can say that it is an elastic collision</h3><h3>And for an elastic collision, coefficient of restitution = 1</h3>

∴ relative velocity of approach = relative velocity of separation

-2 =  v_{2} - u → equation 2

By adding both equations 1 and 2 we get

v_{2} = 0

∴ u = 2 m/s along positive y axis

Kinetic energy before collision and after collision remains constant because it is an elastic collision

Kinetic energy = (m×2² + m×3·7²)÷2

                         = 8·85×m J

Total momentum = m×√(2² + 3·7²)

                             = m× 4·21 kgm/s

3 0
2 years ago
A block of mass 3m is placed on a frictionless horizontal surface, and a second block of mass m is placed on top of the first bl
tatuchka [14]

By Newton's second law, assuming <em>F</em> is horizontal,

• the net <u>horizontal</u> force on the <u>larger</u> block is

<em>F</em> - <em>µmg</em> = 3<em>mA</em>

where <em>µmg</em> is the magnitude of friction felt by the larger block due to rubbing with the smaller one, <em>µ</em> is the coefficient of static friction between the two blocks, and <em>A</em> is the block's acceleration;

• the net <u>vertical</u> force on the <u>larger</u> block is

4<em>mg</em> - 3<em>mg</em> - <em>mg</em> = 0

where 4<em>mg</em> is the mag. of the normal force of the surface pushing up on the combined mass of the two blocks, 3<em>mg</em> is the weight of the larger block, and <em>mg</em> is the weight of the smaller block;

• the net <u>horizontal</u> force on the <u>smaller</u> block is

<em>µmg</em> = <em>ma</em>

where <em>µmg</em> is again the friction between the two blocks, but notice that this points in the same direction as <em>F</em>. It is the only force acting on the smaller block in the horizontal direction, so (b) static friction is causing the smaller block to accelerate;

• the net <u>vertical</u> force on the <u>smaller</u> block is

<em>mg</em> - <em>mg</em> = 0

where <em>mg</em> is the magnitude of both the normal force of the larger block pushing up on the smaller one, and the weight of the smaller block.

(You should be able to draw your own FBD's based on the forces mentioned above.)

(c) Solve the equations above for <em>A</em> and <em>a</em> :

<em>A</em> = (<em>F</em> - <em>µmg</em>) / (3<em>m</em>)

<em>a</em> = <em>µg</em>

5 0
1 year ago
pitot tube on an airplane flying at a standard sea level reads 1.07 x 105 N/m2. What is the velocity of the airplane?
Allushta [10]

Answer:

V_infinty=98.772 m/s

Explanation:

complete question is:

The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?

<u>solution:</u>

<u>given:</u>

<em>p_o=1.07*10^5 N/m^2</em>

<em>ρ_infinity=1.23 kg/m^2</em>

<em>p_infinity=1.01*10^5 N/m^2</em>

p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2

V_infinty^2=9756.097

V_infinty=98.772 m/s

8 0
2 years ago
Given that average speed is distance traveled divided by time, determine the values of m and n when the time it takes a beam of
schepotkina [342]
If speed = distance/time , then time = speed/distance.

So...

Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)

Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))

I hope this was a helpful explanation, please reply if you have further questions about the problem.

Good luck!
5 0
2 years ago
Other questions:
  • A sky diver steps from a high-flying helicopter. if there were not air resistance, how fast would she be falling at the end of a
    12·1 answer
  • Two objects of different masses are sitting on different balance scales. Object A has a greater mass than object B. How will the
    10·1 answer
  • What kind of motion indicates a system where the net force equals zero?
    6·2 answers
  • A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.
    10·1 answer
  • A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about
    13·1 answer
  • A ball hangs on the end of a string that is connected to the ceiling so that it swings like a pendulum. You pull the ball up so
    5·1 answer
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • De Vico Comet orbits the Sun every 74.0 years and has an orbital eccentricity of 0.96. Find the comet's average distance from th
    5·1 answer
  • A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
    6·2 answers
  • What is the internal energy (to the nearest joule) of 10 moles of Oxygen at 100 K?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!