Answer:
The ratio (U₁/U₂) = 6
Explanation:
U, the potential energy is given as
U = kqQ/r
k = Coulomb's constant
q = charge we're concerned about
Q = charge of the negative plate of the capacitor
r = distance of q from the negative plate of the capacitor.
For charge q₁
U₁ = kq₁Q/s
U₂ = kq₂Q/2s
But q₂ = q₁/3
U₂ becomes U₂ = kq₁Q/6s
U₁ = kq₁Q/s
U₂ = kq₁Q/6s
(U₁/U₂) = 6
<h2>
Answer:</h2>
(c) 5m/s²
<h2>
Explanation:</h2>
Total acceleration (a) of a particle in a circular motion is the vector sum of the radial or centripetal acceleration (
) of the particle and the tangential acceleration (
) of the particle and its magnitude can be calculated as follows;
a =
---------------------(i)
<em>But;</em>
=
------------------------------(ii)
Where;
v = instantaneous velocity
r = radius of the circular path of motion
<em>From the question;</em>
v = 30m/s
r = 300m
(i) First let's calculate the centripetal acceleration by substituting the values above into equation (ii) as follows;
= 
= 
= 3m/s²
(ii) From the question, the velocity of the particle is increasing at a constant rate of 4m/s² and that is the tangential acceleration
, of the particle. i.e;
= 4m/s²
(iii) Now substitute the values of
and
into equation (i) as follows;
a = 
a = 
a = 
a = 5m/s²
Therefore, the magnitude of its total acceleration a, is 5m/s²
Answer:
q = - 93.334 nC
Explanation:
GIVEN DATA:
Radius of ring 73 cm
charge on ring 610 nC
ELECTRIC FIELD p FROM CENTRE IS AT 70 CM
E = 2000 N/C
Electric field due tor ring is guiven as
![E = \frac{KQx}{[x^2+ R^2]^{3/2}}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7BKQx%7D%7B%5Bx%5E2%2B%20R%5E2%5D%5E%7B3%2F2%7D%7D)

E1 = 3714.672 N/C
electric field due to point charge q



now the eelctric charge at point P is
E = E1 + E2
solving for q
q = - 93.334 nC
I think thats a trick question on the periodic table there is no Z, theres Zi which is zinc but no Z
Answer:
The Jovian planets formed beyond the Frostline while the terrestrial planets formed in the Frostline in the solar nebular
Explanation:
The Jovian planets are the large planets namely Saturn, Jupiter, Uranus, and Neptune. The terrestrial planets include the Earth, Mercury, Mars, and Venus. According to the nebular theory of solar system formation, the terrestrial planets were formed from silicates and metals. They also had high boiling points which made it possible for them to be located very close to the sun.
The Jovian planets formed beyond the Frostline. This is an area that can support the planets that were made up of icy elements. The large size of the Jovian planets is as a result of the fact that the icy elements were more in number than the metal components of the terrestrial planets.