Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
Answer:
(A) Total energy will be equal to 
(b) Energy density will be equal to 
Explanation:
We have given diameter of the plate d = 2 cm = 0.02 m
So area of the plate 
Distance between the plates d = 0.50 mm = 
Permitivity of free space 
Potential difference V =200 volt
Capacitance between the plate is equal to 
(a) Total energy stored in the capacitor is equal to


(b) Volume will be equal to
, here A is area and d is distance between plates

So energy density 
Answer:
Explanation:
The resultant force F
where
is eastward force,
is force directed towards the North
F=62573.2 N
The magnitude of acceleration of sailboat is given by
Answer:
B. τ = 16 Nm
Explanation:
In order to find the torque exerted by the weight attached to the heel of man's foot, when his leg is stretched out. We use following formula:
τ = Fd
here,
τ = Torque = ?
F = Force exerted by the weight = Weight = mg
F = mg = (4 kg)(10 m/s²) = 40 N
d = distance from knee to weight = 40 cm = 0.4 m
Therefore,
τ = (40 N)(0.4 m)
<u>B. τ = 16 Nm</u>
Given data:
mass of the bullet (m) = 25 g = 0.025 kg,
mass of the gun (M) = 0.9 kg,
speed of the bullet (v) =230 m/s,
speed of the bullet (V) = ?
From the given data it is clear that, the momentum is conserved. According to "<em>law of conservation of momentum" </em>the total momentum before and after the collision is equal.
In this problem the momentum before collision (bullet+gun) is zero.
Therefore, after the gun fires a bullet, the momentum must be zero.
Mathematically,
M × V + m × v = 0
where,
M × V = momentum of the gun
m × v = momentum of the bullet
(0. 9 × V) + (0.025 × 230) = 0
0.9 V = -5.75
V = -5.75/0.9
= -6.39 m/s
<em>The gun recoils with a speed of 6.39 m/s</em>