answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
2 years ago
13

A helium-filled balloon is launched when the temperature at ground level is 27.8°c and the barometer reads 752 mmhg. if the ball

oon's volume at launch is 9.47 × 10^{4} ​4 ​​ l, what is the volume in liters at a height of 36 km, where the pressure is 73.0 mm hg and temperature is 235.0 k? (enter your answer using either standard or scientific notation. for scientific notation, 6.02 x 10^{23} ​23 ​​ is written as 6.02e23.
Physics
1 answer:
ololo11 [35]2 years ago
3 0
The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.

Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³

Given:
At ground level,
p₁ = 752 mm Hg
     = (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
     = 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
     = 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
     = 300.8 K

At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
     = 9.7326 x 10³ Pa
T₂ = 235 K

If the volume at  36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
     = (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
     = 762.15 m³

Answer: 762.2 m³  
You might be interested in
For each property listed, identify the type of element it describes. Very good electrical conductivity: Amphoteric, able to form
kow [346]

The elements that is very good in electrical conductivity are gold and copper: elements that is amphoteric are copper, zinc, tin, lead, aluminum and beryllium: elements that is gaseous at room temperature are hydrogen, nitrogen, oxygen, fluorine and chlorine: elements that is solid at room temperature are all metal except mercury and perhaps some unseen radioactive elements. Lastly, elements that is brittle are hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur and selenium

4 0
2 years ago
Read 2 more answers
Over a period of more than 30 years, albert klein of california drove 2.5 × 106 km in one automobile. consider two charges, q1 =
Semenov [28]
For q3 to be in equilibrium the total force acting on it has to be zero.
Let's say that total distance traveled by car is L (this is just for the convenience).
We can set up a system of equations to find an answer. Let's say that from q1 to q3 the distance is r_1 and from q3 to q2 the distance is r_2, we know that this distance has to be equal to:
r_1+r_2=L km
The second equation is going to the total force acting on the charge q3:
F_{q3}=F_{q3q1}+F_{q3q2}=0\\ 0=k_c\frac{q_1q_3}{r_1^2}+k_c\frac{q_3q_2}{r^2}
k_c is the Coulomb's constant. Since left-hand side is zero we just divide whole equation with k_c to get rid of it:
0=\frac{q_1q_3}{r_1^2}+\frac{q_3q_2}{r^2}
Let's solve this for r_1^2:
0=\frac{8}{r_1^2}+\frac{24}{r^2}\\ \frac{1}{r_1^2}=-\frac{3}{r^2}\\ r_1^2=-\frac{r^2}{3};r_2=L-r_1\\ r_1^2=\frac{(L-r_1)^2}{3}\\ r_1^2=\frac{L^2-2Lr_1+r_1^2}{3}\\ 3r_1^2=L^2-2Lr_1+r_1^2\\ 2r_1^2+2Lr_1-L^2=0
Now we have a quadratic equation with following parameter:
a=2\\ b=2L\\ c=-L^2
We know that two solutions are:
r_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\ r_{1,\:2}=\frac{-2L\pm \sqrt{4L^2+8L^2}}{4}\\ r_{1,\:2}=\frac{-2L\pm \sqrt{12L^2}}{4}\\
We need a positive solution. When we plug in all the numbers we get:
r_1=0.915\cdot 10^6$km

6 0
2 years ago
An electric air heater consists of a horizontal array of thin metal strips that are each 10 mm long in the direction of an airst
sweet-ann [11.9K]

Answer:

see explanation below

Explanation:

Given that,

T_1 = 500°C

T_2 = 25°C

d = 0.2m

L = 10mm = 0.01m

U₀ = 2m/s

Calculate average temperature

\\T_{avg} = \frac{T_1 + T_2}{2} \\\\T_{avg} = \frac{500 + 25}{2} \\\\T_{avg} = 262.5

262.5 + 273

= 535.5K

From properties of air table A-4 corresponding to T_{avg} = 535.5K \approx 550K

k = 43.9 × 10⁻³W/m.k

v = 47.57 × 10⁻⁶ m²/s

P_r = 0.63

A)

Number for the first strips is equal to

R_e_x = \frac{u_o.L}{v}

R_e_x = \frac{2\times 0.01}{47.57 \times 10^-^6 }\\\\= 420.4

Calculating heat transfer coefficient from the first strip

h_1 = \frac{k}{L} \times 0.664 \times R_e_x^1^/^2 \times P_r^1^/^3

h_1 = \frac{43.9 \times 10^-^3}{0.01} \times 0.664\times420 \times 4^1^/^2 \times 0.683^1^/^3\\\\= 52.6W/km^2

The rate of convection heat transfer from the first strip is

q_1 = h_1\times(L\times d)\times(T_1 - T_2)\\\\q_1 = 52.6 \times (0.01\times0.2)\times(500-25)\\\\q_1 = 50W

The rate of convection heat transfer from the fifth trip is equal to

q_5 = (5 \times h_o_-_5-4\times h_o_-_4) \times(L\times d)\times (T_1 -T_2)

h_o_-_5 = \frac{k}{5L} \times 0.664 \times (\frac{u_o\times 5L}{v} )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.05} \times0.664\times (\frac{2 \times 0.05}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 25.5W/Km^2

Calculating h_o_-_4

h_o_-_4 = \frac{k}{4L} \times 0.664 \times (\frac{u_o\times 4L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.04} \times0.664\times (\frac{2 \times 0.04}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 26.3W/Km^2

The rate of convection heat transfer from the tenth strip is

q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)

h_o_-_1_0 = \frac{k}{10L} \times 0.664 \times (\frac{u_o\times 10L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.1} \times0.664\times (\frac{2 \times 0.1}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 16.6W/Km^2

Calculating

h_o_-_9 = \frac{k}{9L} \times 0.664 \times (\frac{u_o\times 9L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.09} \times0.664\times (\frac{2 \times 0.09}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 17.5W/Km^2

Calculating the rate of convection heat transfer from the tenth strip

q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (10 \times 16.6 -9\times 17.5) \times(0.01\times 0.2)\times (500 -25)\\\\=8.1W

The rate of convection heat transfer from 25th strip is equal to

q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)

Calculating h_o_-_2_5

h_o_-_2_5 = \frac{k}{25L} \times 0.664 \times (\frac{u_o\times 25L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.25} \times0.664\times (\frac{2 \times 0.25}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.5W/Km^2

Calculating h_o_-_2_4

h_o_-_2_4 = \frac{k}{24L} \times 0.664 \times (\frac{u_o\times 24L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.24} \times0.664\times (\frac{2 \times 0.24}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.7W/Km^2

Calculating the rate of convection heat transfer from the tenth strip

q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (25 \times 10.5 -24\times 10.7) \times(0.01\times 0.2)\times (500 -25)\\\\=5.4W

6 0
2 years ago
Arrange the following substances from the lightest to the heaviest:
storchak [24]

molecular weights are written in the picture.

CH4<NH3<H2O<Cl2

6 0
1 year ago
Water is boiled in a pan on a stove at sea level. During 10 min of boiling, it is observed that 200 g of water has evaporated. D
Ymorist [56]

Answer : The rate of heat transfer to the water is, 37.92 kJ/min

Explanation : Given,

Time = 10 min

Mass of water = 200 g

Latent heat of fusion of water = 334 J/g

Latent heat of vaporization of water = 2230 J/g

Now we have to calculate the rate of heat transfer to the water.

Q=\frac{m\times (L_v-L_f)}{t}

Now put all the given values in the above formula, we get:

Q=\frac{200g\times (2230-334)J/g}{10min}

Q=37920J/min=37.92kJ/min

Thus, the rate of heat transfer to the water is, 37.92 kJ/min

4 0
2 years ago
Other questions:
  • A ray of yellow light ( f = 5.09 × 1014 hz) travels at a speed of 2.04 × 108 meters per second in
    8·1 answer
  • A 1.0 kg object moving at 4.5 m/s has a wavelength of:
    12·1 answer
  • Rod A and rod B are cylindrical rods made of the same metal. amd they differ only in size. Rod B has double the length and doubl
    14·2 answers
  • A 2 kg stone moves with a speed of 1 m/s. A second 2 kg stone is moving twice as fast. Compare their kinetic energies.
    6·2 answers
  • A heavy frog and a light frog jump straight up into the air. They push off in such away that they both have the same kinetic ene
    5·1 answer
  • A resistor R1 is wired to a battery, then resistor R2 is added in series. Are (a) the potential difference across R1 and (b) the
    6·1 answer
  • According to US government regulations, the maximum sound intensity level in the workplace is 90.0 dB. Within one factory, 32 id
    8·1 answer
  • Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
    8·1 answer
  • Adam takes a bus on a school field trip. The bus route is split into the five legs listed in the table. Find the average velocit
    10·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!