20m away
the dog was 60m away from. you subtract 40m since it is 10m/s x 4 seconds
<u>Answer:</u>
<h3>During wet and freezing temperatures, ice is able to form at a faster pace on bridges because freezing winds blow from above and below and both sides of the bridge, causing heat to quickly escape. The road freezes slower because it is merely losing heat through its surface.</h3>
<u>Sources:</u>
-- https://intblog.onspot.com/en-us/why-do-bridges-become-icy-before-roads
and
-- https://www.accuweather.com/en/accuweather-ready/why-bridges-freeze-before-roads/687262
I hope this helps you! ^^
Answer:
This process involves the motion of dislocations and is termed slip (or glide in some textbooks)
Explanation:
Plastic deformation of metals (and other crystalline materials) usually occurs by slip, which is the sliding of planes of atoms over one another by dislocation movements.
On a microscopic scale, stress causes planes of crystalline objects to leave their original position and slide over other planes into new positions, these microscopic movements manifest as a slip on a macroscopic scale. And the planes do not return back to their original position after the removal of the dislocation-causing stress.
Ok so it would be late and the relative velocity would be 190 m/s because 200 m/s - 10 m/s is 190 m/s. Hope this helps.
Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A