Answer:
option B
Explanation:
given,
Force exerted by the hydraulic jack piston = F₁ = 250 N
diameter of piston, d₁ = 0.02 m
r₁ = 0.01 m
diameter of second piston, d₂ = 0.15 m
r₂ = 0.075 m
mass of the jack to lift = ?
now,




F₂ = 14062.5 N
F = m g


m = 1435 Kg
hence, the correct answer is option B
Given the distance r = 2/1000 m, the force between them F =
0.0104 N, the mass of the two object can be calculated using formula:
F = G(m1m2)/r^2 since the mass are equal F = G (m^2)/r^2
And where G = is the gravitational constant (6.67E-11 m3 s-2
kg-1)
The mass of the two objects are 24.96 kg
Answer:
F = 39.2 N (hand force) and N = 68.6 N (shoulder force)
Explanation:
In this exercise we must use the rotational and translational equilibrium conditions, we have several forces: the weight (W) of the pole applied at its geometric center, the load (w1) at one end, the shoulder support (N) 60 cm from the load and hand force (F) at the other end of the pole
Let's set the reference system at the fit point of the shoulder
∑ τ = 0
We will assume that the counterclockwise turns are positive
w₁ 0.60 + W 0.1 + F₁ 0 - F 0.4 = 0
all distances are measured from the support of the man (x₀ = 0.60 m)
F = (w₁ 0.60 + W 0.1) / 0.4
F = (m₁ 0.6 + m 0.1) g / 0.4
let's calculate
F = (2.6 0.6 + 0.4 0.1) 9.8 / 0.4
F = 39.2 N
this is the force that the hand must exert to keep the system in balance
We apply the translational equilibrium condition
-w₁ -W + N - F = 0
N = w₁ + W + F
N = (m₁ + m) g + F
let's calculate
N = (2.6 + 0.4) 9.8 + 39.2
N = 68.6 N
Answer:
by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2
Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.