answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
1 year ago
12

A man carries a load of mass 2.6kg from one end of a uniform pole 100cm long which has a mass 0.4kg. The pole rest on his should

er at a point 60.0cm from the load and he holds it by the other end. What vertical force must be applied by his hand and what is the force on his shoulder?
Physics
1 answer:
miskamm [114]1 year ago
6 0

Answer:

F = 39.2 N   (hand force) and    N = 68.6 N (shoulder force)

Explanation:

In this exercise we must use the rotational and translational equilibrium conditions, we have several forces: the weight (W) of the pole applied at its geometric center, the load (w1) at one end, the shoulder support (N) 60 cm from the load and hand force (F) at the other end of the pole

Let's set the reference system at the fit point of the shoulder

     ∑ τ = 0

We will assume that the counterclockwise turns are positive

    w₁ 0.60 + W 0.1 + F₁ 0 - F 0.4 = 0

all distances are measured from the support of the man (x₀ = 0.60 m)

    F = (w₁ 0.60 + W 0.1) / 0.4

    F = (m₁ 0.6 + m 0.1) g / 0.4

let's calculate

    F = (2.6 0.6 + 0.4 0.1) 9.8 / 0.4

    F = 39.2 N

this is the force that the hand must exert to keep the system in balance

We apply the translational equilibrium condition

    -w₁ -W + N - F = 0

     N = w₁ + W + F

     N = (m₁ + m) g + F

let's calculate

     N = (2.6 + 0.4) 9.8 + 39.2

     N = 68.6 N

You might be interested in
You drop your keys in a high-speed elevator going up at a constant speed. Part APart complete Do the keys accelerate faster towa
anzhelika [568]

Answer:

Explained

Explanation:

a) No, the keys were initially moving upward in the elevator only effects the initial velocity of the key and not the rate of change of velocity that is acceleration. So, the keys accelerate with the same acceleration as before.

b)Yes, keys will accelerate towards the floor faster if it is a constant speed than it is moving downward because if the elevator is accelerating downward, the downward change in velocity of the keys is at least partially matched by a downward change in the velocity of the of the elevator.

5 0
2 years ago
The net force on a boat causes it to accelerate at 1.55 m/s2. The mass of the boat is 215 kg. The same net force causes another
jekas [21]

Answer:

2666 kg

0.11567 m/s²

Explanation:

m = Mass of boat

a = Acceleration of boat

From Newton's second law

Force

F=ma\\\Rightarrow F=215\times 1.55\\\Rightarrow F=333.25\ N

Force on the first boat is 333.25 N

F=ma\\\Rightarrow m=\frac{F}{a}\\\Rightarrow m=\frac{333.25}{0.125}\\\Rightarrow m=2666\ kg

Hence, mass of the second boat is 2666 kg

Combined mass = 2666+215 = 2881 kg

F=ma\\\Rightarrow a=\frac{F}{m}\\\Rightarrow a=\frac{333.25}{2881}\\\Rightarrow a=0.11567\ m/s^2

The acceleration on the combined mass is 0.11567 m/s²

6 0
2 years ago
A material that has a fracture toughness of 33 MPa.m0.5 is to be made into a large panel that is 2000 mm long by 250 mm wide and
scoray [572]

Answer:

F_{allow} = 208.15kN

Explanation:

The word 'nun' for thickness, I will interpret in international units, that is, mm.

We will begin by defining the intensity factor for the steel through the relationship between the safety factor and the fracture resistance of the panel.

The equation is,

K_{allow} =\frac{K_c}{N}

We know that K_c is 33Mpa*m^{0.5} and our Safety factor is 2,

K_{allow} = \frac{33Mpa*m^{0.5}}{2} = 16.5MPa.m^{0.5}

Now we will need to find the average width of both the crack and the panel, these values are found by multiplying the measured values given by 1/2

<em>For the crack;</em>

\alpha = 0.5*L_c = 0.5*4mm = 2mm

<em>For the panel</em>

\gamma = 0.5*W = 0.5*250mm = 125mm

To find now the goemetry factor we need to use this equation

\beta = \sqrt{sec(\frac{\pi\alpha}{2\gamma})}\\\beta = \sqrt{sec(\frac{2\pi}{2*125mm})}\\\beta = 1

That allow us to determine the allowable nominal stress,

\sigma_{allow} = \frac{K_{allow}}{\beta \sqrt{\pi\alpha}}

\sigma_{allow} = \frac{16.5}{1*\sqrt{2*10^{-3} \pi}}

\sigma_{allow} = 208.15Mpa

So to get the force we need only to apply the equation of Force, where

F_{allow}=\sigma_{allow}*L_c*W

F_{allow} = 208.15*250*4

F_{allow} = 208.15kN

That is the maximum tensile load before a catastrophic failure.

4 0
2 years ago
Alex goes cruising on his dirt bike. He rides 700m north, 300m east, 400 m north, 600m west, 1200m south, 300m east and finally
Bess [88]

Find Displacement and Distance

displacement ...

north is 700+400+100 =1200m n

south=1200m

1200-1200=0


east is 300+300=600m

west is 600m

600-600=0

back at dtart. displ zero


distance is 700+ 300m + 400 m + 600m + 1200m + 300m + 100m  = 3600m


3 0
2 years ago
Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and t
Zepler [3.9K]

Answer:

  v₂ = v/1.5= 0.667 v

Explanation:

For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.

Initial moment before pushing

    p₀ = 0

Final moment after they have been pushed

    p_{f} = m₁ v₁ + m₂ v₂

   p₀ =  p_{f}

   0 = m₁ v₁ + m₂ v₂

   m₁ v₁ = - m₂ v₂

Let's replace

   M (-v) = -1.5M v₂

   v₂ = v / 1.5

  v₂ = 0.667 v

6 0
2 years ago
Other questions:
  • A highway patrolman traveling at the speed limit is passed by a car going 20 mph faster than the speed limit. After one minute,
    13·2 answers
  • To make the jump, Neo and Morpheus have pushed against their respective launch points with their legs applying a _____ to the la
    5·1 answer
  • Most workers in nanotechnology are actively monitored for excess static charge buildup. the human body acts like an insulator as
    9·1 answer
  • Consider a person standing in an elevator that is moving at constant speed upward. The person, of mass m, has two forces acting
    5·2 answers
  • A sled of mass m is being pulled horizontally by a constant horizontal force of magnitude F. The coefficient of kinetic friction
    10·1 answer
  • In rural areas, water is often extracted from underground by pumps. Consider an underground water source whose free surface is 6
    7·1 answer
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • You are on vacation in San Francisco and decide to take a cable car to see the city. A 5800-kgkg cable car goes 260 mm up a hill
    9·1 answer
  • How many conditions does the NEC list whereby conductors shall be considered to be outside of a building or other structure?
    5·1 answer
  • A 70kg man spreads his legs as shown calculate the tripping force​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!