Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.
Explanation:
Measure unstretched length of spring, L. E.g. L = 0.60m.
Set mass to a convenient value (e.g. m = 0.5kg).
Hang mass.
Measure new spring length, L'. E.g. L' = 0.70m.
Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m
Use mg = ke (in equilibrium weight = tension)
k = mg/e
Don't know what value you are using for example. Suppose it is 10N/kg (same thing as 10m/s²).
k = 0.5*10/0.10 = 50 N/m
Repeat for a few different masses. (L always stays the same.)
Take the average of your k values.
Answer:
The two of the following measurements, when taken together, would allow engineers to find the total mechanical energy dissipated during the skid
B. The contact area of each tire with the track.
C. The co-efficent of static friction between the tires and the track.
D. The co-efficent of static friction between the tires and the track.
Explanation:
Answer: The energy delivered to the toaster is 264.490KJ
Explanation:
Here is the complete question:
The resistance of a bagel toaster is 14 ?. To prepare a bagel, the toaster is operated for one minute from a 120-V outlet. How much energy is delivered to the toaster?
Step-by-step explanation:
Please see attachment below
The kinetic energy of a moving object is given by

where m is the object's mass and v its velocity.
In our problem, the initial kinetic energy is:

while the final kinetic energy is:

So, the kinetic energy lost by Lucy and her bike is
Answer:
fcosθ + Fbcosθ =Wtanθ
Explanation:
Consider the diagram shown in attachment
fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)
Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)
Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)
sum of x-direction forces = 0
fx+ Fbx=Wx
fcosθ + Fbcosθ =Wtanθ