Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
Answer:
There is an inward force acting on the can
Explanation:
This inward force is known as Centripetal force and it is responsible for making the can whirl on the end of a string in circle and it is also directed towards the center around which the can is moving.
The right answer for the question that is being asked and shown above is that: "<span>C) The clouds of dust and gases rotate at high speed > The clouds condense > The sun is born > The planets are born " This is the </span><span>diagram that best represents the steps in the formation of planets</span>
Answer:
If both the radius and frequency are doubled, then the tension is increased 8 times.
Explanation:
The radial acceleration (
), measured in meters per square second, experimented by the moving end of the string is determined by the following kinematic formula:
(1)
Where:
- Frequency, measured in hertz.
- Radius of rotation, measured in meters.
From Second Newton's Law, the centripetal acceleration is due to the existence of tension (
), measured in newtons, through the string, then we derive the following model:
(2)
Where
is the mass of the object, measured in kilograms.
By applying (1) in (2), we have the following formula:
(3)
From where we conclude that tension is directly proportional to the radius and the square of frequency. Then, if radius and frequency are doubled, then the ratio between tensions is:
(4)


If both the radius and frequency are doubled, then the tension is increased 8 times.
Answer:
a) f = 615.2 Hz b) f = 307.6 Hz
Explanation:
The speed in a wave on a string is
v = √ T / μ
also the speed a wave must meet the relationship
v = λ f
Let's use these expressions in our problem, for the initial conditions
v = √ T₀ /μ
√ (T₀/ μ) = λ₀ f₀
now it indicates that the tension is doubled
T = 2T₀
√ (T /μ) = λ f
√( 2To /μ) = λ f
√2 √ T₀ /μ = λ f
we substitute
√2 (λ₀ f₀) = λ f
if we suppose that in both cases the string is in the same fundamental harmonic, this means that the wavelength only depends on the length of the string, which does not change
λ₀ = λ
f = f₀ √2
f = 435 √ 2
f = 615.2 Hz
b) The tension is cut in half
T = T₀ / 2
√ (T₀ / 2muy) = f = λ f
√ (T₀ / μ) 1 /√2 = λ f
fo / √2 = f
f = 435 / √2
f = 307.6 Hz
Traslate
La velocidad en una onda en una cuerda es
v = √ T/μ
ademas la velocidad una onda debe cumplir la relación
v= λ f
Usemos estas expresión en nuestro problema, para las condiciones iniciales
v= √ To/μ
√ ( T₀/μ) = λ₀ f₀
ahora nos indica que la tensión se duplica
T = 2T₀
√ ( T/μ) = λf
√ ) 2T₀/μ = λ f
√ 2 √ T₀/μ = λ f
substituimos
√2 ( λ₀ f₀) = λ f
si suponemos que en los dos caso la cuerda este en el mismo armónico fundamental, esto es que la longitud de onda unicamente depende de la longitud de la cuerda, la cual no cambia
λ₀ = λ
f = f₀ √2
f = 435 √2
f = 615,2 Hz
b) La tension se reduce a la mitad
T = T₀/2
RA ( T₀/2μ) = λ f
Ra(T₀/μ) 1/ra 2 = λ f
fo /√ 2 = f
f = 435/√2
f = 307,6 Hz