answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
2 years ago
10

A small object is placed at the top of an incline that is essentially frictionless. The object slides down the incline onto a ro

ugh horizontal surface, where it stops in 5.0 s after traveling 60 m. a) What is the speed of the object at the bottom of the incline and its acceleration along the horizontal surface? b) What is the height of the incline?
Physics
1 answer:
Georgia [21]2 years ago
4 0

Answer

given,

time taken to stop by the object = 5 s

distance travel before stopping = 60 m

final velocity = 0

using equation of motion

v = u + at

0 = u - 5 a

a_x = \dfrac{u}{5}

s = u t + \dfrac{1}{2}at^2

s = 5u + \dfrac{1}{2}\times \dfrac{4}{5}\times u^2

60 = 2.5 u

u = 24 m/s

a_x = \dfrac{24}{5}

a_x = 4.8 m/s²

b) using energy conservation

\dfrac{1}{2}mv_i^2 + \dfrac{1}{2}mv_f^2 = mg(\Delta h)

\dfrac{1}{2}v_i^2= g(\Delta h)

(\Delta h) = \dfrac{0.5 \times 24^2}{9.8}

Δh = 29.38 m

You might be interested in
A disk of mass m and radius r is initially held at rest just above a larger disk of mass M and radius R that is rotating at angu
Leto [7]

Answer:

Explanation:

Moment of inertia of larger disk   I₁ = 1/2 MR²

Moment of inertia of smaller  disk   I₂ = 1/2 m r ²

Initial angular velocity

We shall apply law of conservation of angular momentum .

initial total momentum = final angular momentum

I₁ X ωi  = ( I₁ + I₂ )ωf

1/2 MR² x ωi = 1/2 ( m r² + MR² ) ωf

ωf =  ωi   / ( 1 + m r²/MR² )

6 0
2 years ago
A 500 kg motorcycle accelerates at a rate of 2 m/s .how much force was applied to the motorcycle?
Aleksandr [31]

Answer:

by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2

8 0
2 years ago
Read 2 more answers
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1
notka56 [123]

Complete Question

Part of the question is shown on the first uploaded image

The rest of the question

What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.

Answer:

The net force exerted on the third charge is  F_{net}=  3.22*10^{-5} \ J

Explanation:

From the question we are told that

    The third charge is  q_3 =  55 nC =  55 *10^{-9} C

    The position of the third charge is  x = -1.220 \ m

     The first charge is q_1 =  -16 nC  =  -16 *10^{-9} \ C

     The position of the first charge is x_1 =  -1.650m

      The second charge is  q_2 =  32 nC  =  32 *10^{-9} C

      The position of the second charge is  x_2 =   0  \ m  

The distance between the first and the third charge is

      d_{1-3} =  -1.650 -(-1.220)

     d_{1-3} = -0.43 \ m

The force exerted on the third charge by the first is  

     F_{1-3} =  \frac{k  q_1 q_3}{d_{1-3}^2}

Where k is the coulomb's constant with a value  9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

substituting values

      F_{1-3} =  \frac{9*10^{9}* 16 *10^{-9} * (55*10^{-9})}{(-0.43)^2}

       F_{1-3} = 4.28 *10^{-5} \ N

 The distance between the second and the third charge is      

  d_{2-3} =  0- (-1.22)

   d_{2-3} =1.220 \ m

The force exerted on the third charge by the first is mathematically evaluated as

       F_{2-3} =  \frac{k  q_2 q_3}{d_{2-3}^2}

substituting values

       F_{2-3} =  \frac{9*10^{9} * (32*10^{-9}) *(55*10^{-9})}{(1.220)^2}

       F_{2-3} =  1.06*10^{-5} N

The net force is

      F_{net} =  F_{1-3} -F_{2-3}

substituting values

    F_{net} = 4.28 *10^{-5} - 1.06*10^{-5}

    F_{net}=  3.22*10^{-5} \ J

6 0
2 years ago
A 1500 W radiant heater is constructed to operate at 115 V. (a) What will be the current in the heater? (b) What is the resistan
OlgaM077 [116]

Answer:

a) I = 13.04 A

b)  R = 8.82 ohms

c) 1291.87 kilocalories are generated an hour.

Explanation:

let P be the power of the heater, V be the voltage of the heater, I be the current of the heater, R be the resistance.

a) we know that:

P = I×V

I = P/V

  = (1500)/(115)

  = 13.04 A

Therefore, the current of the heater is 13.04 A

b) we now have voltage and current, according to Ohm's law:

R = V/I

  = (115)/(13.04)

  = 8.82 ohms

Therefore, the resistance of the heating coil is 8.82 ohms.

c) the number of kilocalories generated in one hour by the heater is just the energy the heater produces in one hour which is given by:

E = P×t

  = (1500)(1×60×60)

  = 5400000 J

since 1 calorie = 4.81 J

1 kilocalorie = 0.001 calories

E = 5400000/4.18 ≈ 1291866.029 calories ≈1291.87 kilocalories

Therefore, 1291.87 kilocalories are produced/generated in one hour.

8 0
2 years ago
You are testing a new amusement park roller coaster with an empty car with a mass of 130 kg. One part of the track is a vertical
vlada-n [284]

Answer:

Work done by friction along the motion is given as

W_f = -5857.8 J

Explanation:

As per work energy theorem we can say

Work done by all forces = change in kinetic energy of the system

so here car is moving from bottom to top

so here the change in kinetic energy is total work done on the car

so here we will have

W_f + W_g = \frac{1}{2}m(v_f^2 - v_i^2)

W_f - mgH = \frac{1}{2}m(v_f^2 - v_i^2)

now plug in all data in it

W_f - (130)(9.81)(2\times 12) = \frac{1}{2}(130)(8^2 - 25^2)

W_f = 30607.2 - 36465

W_f = -5857.8 J

6 0
2 years ago
Other questions:
  • In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
    7·1 answer
  • A well insulated and perfectly sealed room is installed with 4 HP fan to circulate air for 1.5 hours. Determine the increase in
    11·1 answer
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • What type of roadway has the highest number of hazards per mile?
    6·1 answer
  • Moving water, like that of a river, carries sediment as it moves along its bed. The faster the water flows, the more sediment th
    13·2 answers
  • Which of the following graphs shows the relationship between two variables that obey the inverse square law?​
    12·1 answer
  • Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
    7·1 answer
  • A displacement vector is 34.0 m in length and is directed 60.0° east of north. What are the components of this vector? Northward
    15·1 answer
  • A solenoid of length 0.700m having a circular cross-section of radius 5.00cm stores 6.00 μJ of energy when a 0.400-A current run
    10·2 answers
  • On a straight road (taken to be in the +x direction) you drive for an hour at 50 km per hour, then quickly speed up to 90 km per
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!