Answer:
kg m/s
Explanation:
e = Charge = C
V = Voltage = 
c = Speed of light = m/s
Momentum is given by

The unit of MeV/c in SI fundamental units is kg m/s
The Young modulus is given by:

where
F is the force applied

is the initial length of the wire

is the cross-sectional area of the wire

is the stretch of the wire
The wire in the problem stretches by

of its length, this means

We can also calculate the area of the wire; its radius is in fact half the diameter:

and so the area is

We know the force applied to the wire, F=20 N, so now we have everything to calculate the Young modulus:
Explanation:
Upstroke is a mechanism which helps to raise the plunger and downstroke helps to help lower the plunger. On the up-stroke of the plunger, the lower valve opens and the upper valve is closed. ... Whereas, on the downstroke, the lower valve closes and the upper one opens.
Answer:
solution:
dT/dx =T2-T1/L
&
q_x = -k*(dT/dx)
<u>Case (1) </u>
dT/dx= (-20-50)/0.35==> -280 K/m
q_x =-50*(-280)*10^3==>14 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (3)
q_x =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4)
q_x =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5)
q_x =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
Answer:
E = k*Q₁/R₁² V/m
V = k*Q₁/R₁ Volt
Explanation:
Given:
- Charge distributed on the sphere is Q₁
- The radius of sphere is R₁
- The electric potential at infinity is 0
Find:
What is the electric field at the surface of the sphere?E.
What is the electric potential at the surface of the sphere?V
Solution:
- The 3 dimensional space around a charge(source) in which its effects is felt is known in the electric field.
- The strength at any point inside the electric field is defined by the force experienced by a unit positive charge placed at that point.
- If a unit positive charge is placed at the surface it experiences a force according to the Coulomb law is given by
F = k*Q₁/R₁²
- Then the electric field at that point is
E = F/1
E = k*Q₁/R₁² V/m
- The electric potential at a point is defined as the amount of work done in moving a unit positive charge from infinity to that point against electric forces.
- Thus, the electric potential at the surface of the sphere of radius R₁ and charge distribution Q₁ is given by the relation
V = k*Q₁/R₁ Volt