answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
2 years ago
9

You are testing a new amusement park roller coaster with an empty car with a mass of 130 kg. One part of the track is a vertical

loop with a radius of 12.0 m. At the bottom of the loop (point A) the car has a speed of 25.0 m/s and at the top of the loop (point B) it has speed of 8.00 m/s.
Physics
1 answer:
vlada-n [284]2 years ago
6 0

Answer:

Work done by friction along the motion is given as

W_f = -5857.8 J

Explanation:

As per work energy theorem we can say

Work done by all forces = change in kinetic energy of the system

so here car is moving from bottom to top

so here the change in kinetic energy is total work done on the car

so here we will have

W_f + W_g = \frac{1}{2}m(v_f^2 - v_i^2)

W_f - mgH = \frac{1}{2}m(v_f^2 - v_i^2)

now plug in all data in it

W_f - (130)(9.81)(2\times 12) = \frac{1}{2}(130)(8^2 - 25^2)

W_f = 30607.2 - 36465

W_f = -5857.8 J

You might be interested in
Two objects, each of weight W, hang vertically by spring scales as shown in the figure. The pulleys and the strings attached to
valentinak56 [21]

The reading on the scale is the tension on the string that connects the two objecst. In order to support the blocks it must pull the weights by a force magnitude of W. So, the tension of the rope is W. Therefore, the reading on the scale is W, D.


I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!

6 0
2 years ago
Read 2 more answers
Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
Leni [432]

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

3 0
2 years ago
The diagram shows two vectors that point west and north. What is the magnitude of the resultant vector? 13 miles 17 miles 60 mil
Kipish [7]
Using the formula A squared plus B squared equals C squared, we can find the solution by substituting 5 for A and 12 for B.

By squaring 5, we get 25, and by squaring 12, we get 144. Adding these, we get 169. The square root of this is 13.
6 0
2 years ago
Read 2 more answers
What physical property of minerals describes how they will break along a plane of weakness in a crystal lattice?
Rom4ik [11]
<span>The answer is cleavage Cleavage is the way minerals will break along a plane of weakness in a crystal lattice. These plane of relative weakness is formed due to various reasons like the locations of atoms in a crystal lattice so these locations form the smooth repeting surface which could be found out by studying its lattice or are sometimes visible to naked eye.</span>
5 0
2 years ago
A truck using a rope to tow a 2230-kg car accelerates from rest to 13.0 m/s in a time of 15.0s. How strong must the rope be? μk
Leokris [45]

Answer:

The rope must have a force of 10084,21 N

Explanation

Acceleration calculation

The car acceleration is equal to the acceleration of the truck

ac: car acceleration\frac{m}{s^{2} }

at: truck acceleration\frac{m}{s^{2} })

ac = at= \frac{vf-vi}{t-ti}  equation(1)

Known information:

vi = Initial speed = 0, ti = initial time = 0

vf = Final speed = 13 \frac{m}{s}, t = final time =5 s

We replaced the known information in the equation(1):

ac = at = \frac{13-0}{15-0}

ac=ac=\frac{13}{15}  \frac{m}{s}

Dynamic analysis

The forces acting on the car are the following:

Wc: Car weight

N: normal force, road force on the car

Ff: Friction force

T: Force of tension

Car weight calculation:

Wc=mc*g

mc = Car mass = 2230kg

g = Gravity acceleration=9.8 \frac{m}{s^{2} }

Wc= 2230*9.8

Wc=21854 N

Normal force calculation:

Newton's first law

sum Fy= 0

N-W=0

N=W

N=21854 N

Friction force calculation (Ff):

We have the formula to calculate the friction force:

Ff = μk * N  Equation (3)

μk kinetic coefficient of friction

We know that μk = 0.373and N= 21854N ,then:

Ff=0.373*21854

Ff=8151.54 N

Calculation of the tension force in the rope (T):

Newton's Second law

sum Fx= mc*ac

T-Ff=mc*ac

T=2230(\frac{13}{15}) + 8151.54

T=10084,21 N

Answer: The rope must have a force of 10084,21 N

8 0
2 years ago
Other questions:
  • In a bedridden patient recovering from a badly fractured femur, disuse atrophy in the thigh muscles is caused by _________.
    11·1 answer
  • Ron fills a beaker with glycerin (n = 1.473) to a depth of 5.0 cm. if he looks straight down through the glycerin surface, he wi
    10·1 answer
  • Zamir and Talia raced through a maze. Zamir walked 2 m north, 2 m east, 4 m south, 2 m east, 4 m north, 2 m east, 3 m south, 4 m
    11·2 answers
  • As a youngster, you drive a nail in the trunk of a young tree that is 3 meters tall. The nail is about 1.5 meters from the groun
    9·1 answer
  • Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current.
    8·1 answer
  • Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
    8·1 answer
  • A 50.0 kg object is moving at 18.2 m/s when a 200 N force
    14·1 answer
  • Look at the two question marks between zinc (Zn) and arsenic (As). At the time, no elements were known
    9·1 answer
  • The wad of clay of mass m = 0.36 kg is initially moving with a horizontal velocity v1 = 6.0 m/s when it strikes and sticks to th
    7·1 answer
  • A car of mass 600 Kg is moving at 15m/s. Calculate its momentum.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!