Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
Answer:
0.24 kgm²
Explanation:
= length of the bat = 81.3 cm = 0.813 m
= mass of the bat = 0.96 kg
= distance of the center of mass of bat from the axis of rotation = 55.9 cm = 0.559 m
= Period of oscillation = 1.35 sec
= moment of inertia of the bat
Period of oscillation is given as


= 0.24 kgm²
Answer:
β2= β1+10*f
Explanation:
comparing β2 and β1, it is said that β2 is increased by a factor of f.
for each factor of f, there is a 10*f dB increase.
therefore if the β1 is increases by an intensity of factor f
the new intensity would be β1+ 10*f
Answer:
0.243
Explanation:
<u>Step 1: </u> Identify the given parameters
Force (f) = 5kN, length of pitch (L) = 5mm, diameter (d) = 25mm,
collar coefficient of friction = 0.06 and thread coefficient of friction = 0.09
Frictional diameter =45mm
<u>Step 2:</u> calculate the torque required to raise the load
![T_{R} = \frac{5(25)}{2} [\frac{5+\pi(0.09)(25)}{\pi(25)-0.09(5)}]+\frac{5(0.06)(45)}{2}](https://tex.z-dn.net/?f=T_%7BR%7D%20%3D%20%5Cfrac%7B5%2825%29%7D%7B2%7D%20%5B%5Cfrac%7B5%2B%5Cpi%280.09%29%2825%29%7D%7B%5Cpi%2825%29-0.09%285%29%7D%5D%2B%5Cfrac%7B5%280.06%29%2845%29%7D%7B2%7D)
= (9.66 + 6.75)N.m
= 16.41 N.m
<u>Step 3:</u> calculate the torque required to lower the load
![T_{L} = \frac{5(25)}{2} [\frac{\pi(0.09)(25) -5}{\pi(25)+0.09(5)}]+\frac{5(0.06)(45)}{2}](https://tex.z-dn.net/?f=T_%7BL%7D%20%3D%20%5Cfrac%7B5%2825%29%7D%7B2%7D%20%5B%5Cfrac%7B%5Cpi%280.09%29%2825%29%20-5%7D%7B%5Cpi%2825%29%2B0.09%285%29%7D%5D%2B%5Cfrac%7B5%280.06%29%2845%29%7D%7B2%7D)
= (1.64 + 6.75)N.m
= 8.39 N.m
Since the torque required to lower the thread is positive, the thread is self-locking.
The overall efficiency = 
= 
= 0.243