answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
2 years ago
13

When a pendulum is at the midpoint of its oscillation, hanging straight down, which statement is true?

Physics
2 answers:
Svetach [21]2 years ago
5 0
When a pendulum is at the midpoint of its oscillation, hanging straight down ...

-- that's the fastest it's going to swing, so its kinetic energy is maximum;
and
-- that's the lowest it's going to get, so its potential energy is minimum.

'c' is your choice.
Misha Larkins [42]2 years ago
3 0

c. Kinetic energy is maximum and potential energy is minimum.

You might be interested in
A student has made the statement that the electric flux through one half of a Gaussian surface is always equal and opposite to t
nata0808 [166]

Answer:

E.true only when no charge is enclosed within the Gaussian surface.

Explanation:

Because Gauss’s law states that the net flux of an electric field in a closed surface is directly proportional to the enclosed electric charge.

6 0
1 year ago
A huge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. The uppe
Nonamiya [84]

Answer:

6.78 X 10³ N/C

Explanation:

Electric field near a charged infinite plate

=  surface charge density / 2ε₀

Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.

Field due to charge density of +95.0 nC/m2

E₁ = 95 x 10⁻⁹ / 2 ε₀

Field due to charge density of -25.0 nC/m2

E₂ = 25 x 10⁻⁹ /  2ε₀

Total field

E = E₁ + E₂

= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ /  2ε₀

= 6.78 X 10³ N/C

4 0
1 year ago
An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate
OverLord2011 [107]

Answer:

time required after impact for a puck is 2.18 seconds

Explanation:

given data

mass = 30 g = 0.03 kg

diameter = 100 mm = 0.1 m

thick = 0.1 mm = 1 ×10^{-4} m

dynamic viscosity = 1.75 ×10^{-5} Ns/m²

air temperature = 15°C

to find out

time required after impact for a puck to lose 10%

solution

we know velocity varies here 0 to v

we consider here initial velocity = v

so final velocity = 0.9v

so change in velocity is du = v

and clearance dy = h

and shear stress acting on surface is here express as

= µ \frac{du}{dy}

so

= µ  \frac{v}{h}   ............1

put here value

= 1.75×10^{-5} × \frac{v}{10^{-4}}

= 0.175 v

and

area between air and puck is given by

Area = \frac{\pi }{4} d^{2}

area  =  \frac{\pi }{4} 0.1^{2}

area = 7.85 × \frac{v}{10^{-3}} m²

so

force on puck is express as

Force = × area

force = 0.175 v × 7.85 × 10^{-3}

force = 1.374 × 10^{-3} v    

and now apply newton second law

force = mass × acceleration

- force = mass \frac{dv}{dt}

- 1.374 × 10^{-3} v = 0.03 \frac{0.9v - v }{t}

t =  \frac{0.1 v * 0.03}{1.37*10^{-3} v}

time = 2.18

so time required after impact for a puck is 2.18 seconds

3 0
2 years ago
(Double points) A machine receives electricity that enables it to deliver a total of 8,542 N of force for the completion of its
storchak [24]

Answer: machine's efficiency = 82.2%

Explanation:

Efficiency of a machine is the capability of a machine to convert input to output without waste.

It can be expressed as

Efficiency = output/ input × 100%

Output = 7,023N

Imput = 8,542N

Efficiency = 7,023N/8,542N × 100%

Efficiency = 82.2%

4 0
2 years ago
A plane has an average air speed (this is the speed the plane moves through air) of 750 mph. The plane flies a route of 5000 mil
Digiron [165]

Answer:

6 hours 15 minutes

Explanation:

On the trip from L.A. to London, the plane travels at 750 mph against a headwind of 50 mph, and that makes the net 700 mph (in aviation speak, 750 is the airspeed, while 700 is the groundspeed).  5000 miles divided by 700 mph results in about 7.14 hours, or about 7 hours and 9 minutes.  On the return trip, ASSUMING THE SAME WIND, the plane travels at 750 mph, but this time the wind of 50 mph is a tail wind.  So the net (groundspeed) is 800 mph.  Traveling 5000 miles at 800 mph only takes 6.25 hours, or 6 hours and 15 minutes.  

Outbound flight 7 hours 9 minutes

Return flight 6 hours 15 minutes

6 0
1 year ago
Other questions:
  • tas watches as his uncle changes a flat tire on a car. his uncle raises the car using a machine called a jack. each time his unc
    9·2 answers
  • During action potential, the electrical charge inside the neuron is __________ the electrical charge outside the neuron.
    9·2 answers
  • When you stand by the side of a pool someone swimming underwater appears to be in a different location than she really is the ef
    10·2 answers
  • Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
    14·1 answer
  • A rectangular key was used in a pulley connected to a line shaft with a power of 7.46 kW at a speed of 1200 rpm. If the shearing
    7·2 answers
  • A backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pres- sure at
    6·1 answer
  • Suppose you want to make a scale model of a hydrogen atom. You choose, for the nucleus, a small ball bearing with a radius of 1.
    7·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • An excited hydrogen atom releases an electromagnetic wave to return to its normal state. You use your futuristic dual electric/m
    11·1 answer
  • Differences between Pressure and upthrust​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!