Answer:

Explanation:
Force on a current carrying rod due to magnetic field is given as

here we know that
current in the rod


now magnetic force is balanced by the weight of the rod
so we will have



Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
Complete Question
The complete question is shown on the first uploaded image
Answer:
The angle between shuttle's velocity and the Earth's field is 
Explanation:
From the question we are told that
The length of eire let out is 
The emf generated is 
The earth magnetic field is 
The speed of the shuttle and tether is 
The emf generated is mathematically represented as

making
the subject of the formula
![\theta = sin ^{-1}[ \frac{\epsilon}{L * B *v} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20sin%20%5E%7B-1%7D%5B%20%5Cfrac%7B%5Cepsilon%7D%7BL%20%20%2A%20B%20%20%2Av%7D%20%5D)
substituting values
![\theta = sin ^{-1}[ \frac{40}{250 * (5*10^{-5}) *(7.80 *10^{3})} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20sin%20%5E%7B-1%7D%5B%20%5Cfrac%7B40%7D%7B250%20%20%2A%20%285%2A10%5E%7B-5%7D%29%20%20%2A%287.80%20%2A10%5E%7B3%7D%29%7D%20%5D)

Answer:
Part a)
Induced EMF when length vector is along Z direction is 0.72 V
Part b)
Induced EMF when length vector is along Y direction is ZERO
Explanation:
As we know that the motional EMF induced in the wire is given as

1)
As we know that



now we have

so we have

2)
If the length vector is along Y direction then we have

so again we have

so we have
EMF = 0
Answer:
The gas was Hexane
Explanation:
taking the diference between the mass of the flask and the final mass qe can calculate the mass of liquid injected (assuming none escaped the flask):

with the volume of the flask we can get the density of the gas at the indicated pressure and temperature:

From the ideal gases law we have that the density can be calculated as:

Where R is the ideal gases constant = , and M the molecular weight of the fluid. Solving for M:


Note that the temperature is computed in Kelvin T= 18+273=291K
The gas with the closer molar mass is Hexane