Answer:
circuit sketched in first attached image.
Second attached image is for calculating the equivalent output resistance
Explanation:
For calculating the output voltage with regarding the first image.

![Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V](https://tex.z-dn.net/?f=Vout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5B%2F%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DVout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5C%5CVout%20%3D%205%20%5Cfrac%7B2%7D%7B5%7D%20%3D%202%20V)
For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.
so.

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.
if the -5% is applied to both resistors the Voltage is still 5V because the quotient has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:




so.

Answer:

(we need the mass of the astronaut A)
Explanation:
We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed
of 0 m/s and a mass
and the IMAX camera with an initial speed
of 7.5 m/s and a mass
of 15.0 kg.
The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

By the law of conservation we know that
For
(final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).
So:


Answer:
Q=1005 J
t= 0.67 sec
Explanation:
Lets take condition of room is 1 atm and 25°C.
Heat capacity ,c = 21 J /K.mol
If we assume that air is ideal gas that
P V = n R T



V= 107250 L
At STP number of moles given as

V=22.4 L at S.T.P.

n=4787.94 moles
n= 4.784 Kmoles
So heat required to raise 10°C temperature
Q = n x c x ΔT
Q = 4.78794 x 21 x 10
Q=1004.64 J
Time t
t= Q/P
P= 1.5 KW
t = 1.004.64 /1.5
t= 0.66 sec
Complete Question
The complete question is shown on the first and second uploaded image
Answer:
The power created is 
Explanation:
From the question we are told that
The that the average power is mathematically represented as

Where W is is the Workdone which is mathematically represented as

Where F is the applies force and s is the displacement due to the force
So

Now this displacement can be represented mathematically as

Where
is the average velocity and
is the time taken
So

=> 
The velocity would switch on the cars