Answer:
A) vertically upward
Explanation:
Since the tyre is rotating with uniform angular speed and moving with constant linear speed
So as soon as a small stone is stuck into the groove of the tyre the speed of the stone is same as that of the tyre
so now we can say that stone will start revolving with the tyre of the car at constant angular speed and moving with uniform speed also
so here just after that the tangential acceleration of the stone must be zero while radial acceleration must be towards the center of the tyre given as

so we will have direction of net acceleration is towards its center so correct answer will be
A) vertically upward
The force of F=10 N produces an extension of

on the string, so the spring constant is equal to

Then the string is stretched by

. The work done to stretch the string by this distance is equal to the variation of elastic potential energy of the string with respect to its equilibrium position:
Answer:

Explanation:
First calculate the mass of the asteroid. To do so, you need to find the volume and know the density of iron.
If r = d/2 = 645ft, then:


So


Once you know both masses, you can calculate the force using Newton's universal law of gravitation:

Where G is the gravitational constant:


Answer:
5.72 seconds
848.27 m/s
97.94 m
Explanation:
t = Time taken
u = Initial velocity = 15 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

Time taken to reach maximum height is 0.97 seconds

So, the stone would travel 11.47 m up
So, total height stone would fall is 75+11.47 = 86.47 m
Total distance travelled by the stone would be 75+11.47+11.47 = 97.94 m

Time taken by the stone to travel 86.47 m to the water is is 4.2 seconds
The stone reaches the water after 4.2+1.52 = 5.72 seconds after throwing the stone

Speed just before hitting the water is 848.27 m/s