Answer:
v=8m/s
Explanation:
To solve this problem we have to take into account, that the work done by the friction force, after the collision must equal the kinetic energy of both two cars just after the collision. Hence we have
![W_{f}=E_{k}\\W_{f}=\mu N=\mu(m_1+m_1)g\\E_{k}=\frac{1}{2}[m_1+m_2]v^2](https://tex.z-dn.net/?f=W_%7Bf%7D%3DE_%7Bk%7D%5C%5CW_%7Bf%7D%3D%5Cmu%20N%3D%5Cmu%28m_1%2Bm_1%29g%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Bm_1%2Bm_2%5Dv%5E2)
where
mu: coefficient of kinetic friction
g: gravitational acceleration
We can calculate the speed of the cars after the collision by using

Now , we can compute the speed of the second car by taking into account the conservation of the momentum

the car did not exceed the speed limit
Hope this helps!!
Tech B is saying correct.
<u>Explanation:</u>
Yes, tires are provided with date codes but those date codes are correlated with manufacturing or production dates and not with the date of discarding. But it is difficult to understand or decode the date code. The tires with 3 digit code represent very old tires while the tires with 4 digit code are made after 1999.
In the four-digit date code, the first two digits indicate the week during which that tire was produced and the last two digits indicate the year of production. So the statement said by Tech A is wrong and the statement said by Tech B is correct.
<span>(a) 0.0676 l
(b) 67.6 cc
So we've been told that 5.00 L of blood flows through the heart every minute and that the heart beats 74.0 times per minute. So that means that for every beat of the heart, 5.00 L / 74.0 = 0.067567568 L of blood flows through the heart. Rounding to 3 significant figures gives 0.0676 l. Converting from liters to cubic centimeters simply require a multiplication by 1000, so we have 67.6 cc of blood pumped per beat.</span>
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:
</span>