answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sunny_sXe [5.5K]
2 years ago
13

Given three different locations on Earth's surface, where will the weight of a person be greatest? in New York City, which is ab

out 6369 km from the center of the Earth at the South Pole, which is about 6356 km from the center of the Earth on the Equator line, which is about 6378 km from the center of the Earth the weight is the same at all three locations
Physics
1 answer:
zhenek [66]2 years ago
3 0

Answer:

B. South Pole.

Explanation:

In order to answer this question, we simply have to refer to the laws of the equations of gravitational mechanics.

The equation given by Newton tells us that

F = \frac {Gm_1m_2} {r^2}

In the case where we compare a specific place where the Force of Gravity is greater or lesser, we focus on the term assigned to the Planet's Radius.

In the case of G, m_1, m_2, we understand that they are constant.

We can easily notice that the more the Radius (Height seen from a viewer on the ground), the lower the force will be.

<em>In other words, the smaller the radius in which the measurement is made with respect to the center of the earth, the greater the gravitational force.</em>

In that order of ideas the smallest radio has South Pole, which is about 6356 km from the center of the Earth on the Equator line

You might be interested in
A particle with a charge of -1.24 x 10"° C is moving with instantaneous velocity (4.19 X 104 m/s)î + (-3.85 X 104 m/s)j. What is
astra-53 [7]

Answer:

(a) F= 6.68*10¹¹⁴ N (-k)

(b) F =( 6.68*10¹¹⁴ i  + 7.27*10¹¹⁴ j  ) N

Explanation

To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:

F=q* v X B Formula (1 )

q: charge (C)

v: velocity (m/s)

B: magnetic field (T)

vXB : cross product between the velocity vector and the magnetic field vector

Data

q= -1.24 * 10¹¹⁰ C

v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j

B  =(1.40 T)i  

B  =(1.40 T)k

Problem development

a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =

            = - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)

1T= 1 N/ C*m/s

We apply the formula (1)

  F= 1.24 * 10¹¹⁰ C*  5.39* 10⁴ m/s* N/ C*m/s (-k)

   F= 6.68*10¹¹⁴ N (-k)

a)  vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =

             =( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T

1T= 1 N/ C*m/s

We apply the formula (1)

F= 1.24 * 10¹¹⁰ C*  (  5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s

F =( 6.68*10¹¹⁴  i  + 7.27*10¹¹⁴  j  ) N

8 0
2 years ago
A 1700kg rhino charges at a speed of 50.0km/h. what is the magnitude of the average force needed to bring the rhino to a stop in
stepladder [879]
Impulse equals Change in Momentum
F = average applied force = to be determined
Δt = time during which the force is applied = 0.50 s
m = mass = 1,700 kg
Δp = change in momentum = to be determined
Δv = change in velocity = to be determined
v1 = initial velocity = 50.0 km/h = 50,000 m/h = 13.9 m/s
v2 = final velocity = 0.00 km/h = 0.00 m/s

F∙Δt = Δp
F∙Δt = m∙Δv
F∙Δt = m∙(v2 - v1)

F = m∙(v2 - v1) / Δt
F = 1,700 kg∙(0.00 m/s - 13.9 m/s) / 0.50 s
<span>F = -47,222 N The negative sign means that the force vector is </span>
<span>applied AGAINST the momentum vector of the rhinoceros.</span>
7 0
2 years ago
A child on a 2.4 kg scooter at rest throws a 2.2 kg ball. The ball is given a speed of 3.1 m/s and the child and scooter move in
kykrilka [37]

Answer:

The child's mass is 14.133 kg

Explanation:

From the principle of conservation of linear momentum, we have;

(m₁ + m₂) × v₁ + m₃ × v₂ = (m₁ + m₂)  × v₃ - m₃ × v₄

We include the negative sign as the velocities were given as moving in the opposite directions

Since the child and the ball are at rest, we have;

v₁ = 0 m/s and v₂= 0 m/s

Hence;

0 = m₁ × v₃ - m₂ × v₄

(m₁ + m₂)× v₃ = m₃ × v₄

Where:

m₁ = Mass of the child

m₂ = Mass of the scooter = 2.4 kg

v₃ = Final velocity of the child and scooter = 0.45 m/s

m₃ = Mass of the ball = 2.4 kg

v₄ = Final velocity of the ball = 3.1 m/s

Plugging the values gives;

(m₁ + 2.4)× 0.45 = 2.4 × 3.1

(m₁ + 2.4) = 16.533

∴ m₁ + 2.4 = 16.533

m₁ = 16.533 - 2.4 = 14.133 kg

The child's mass = 14.133 kg.

3 0
2 years ago
Can someone help with my physics homework? please
Murrr4er [49]

Answer:

a) 19536 joules of work are done.

b) The work is done by the engine on the structure of the cart.

c) There are three options:  (i) Keeping the engine and changing the travelled distance, (ii) Changing the engine and keeping the travelled distance, (iii) Changing the engine and the travelled distance.

d) 24442 joules of work are done.

e) We may change for a bigger engine if it allows a greater acceleration and higher peak speed.

f) The bigger engine uses more gas to go 22 meters.

g) An empty semi truck uses more gas than a car since the first has much more mass than a car and is designed for moves big loads and for being fast.

Explanation:

a) If force applied in the cart is uniform, that is, constant in magnitude and direction and is parallel to distance travelled by the car, the work done on the cart is defined by the following equation:

W = F\cdot \Delta s (1)

Where:

F - Force applied by the cart, measured in newtons.

\Delta s - Distance travelled by the car, measured in meters.

W - Work done on the cart, measured in joules.

If we know that F = 888\,N and \Delta s = 22\,m, then the work done on the cart is:

W =(888\,N)\cdot (22\,m)

W = 19536\,J

19536 joules of work are done.

b) The work is done by the engine on the structure of the cart.

c) There are three options:  (i) Keeping the engine and changing the travelled distance, (ii) Changing the engine and keeping the travelled distance, (iii) Changing the engine and the travelled distance.

d) If we know that F = 1111\,N and \Delta s = 22\,m , then the work on the cart is:

W = (1111\,N)\cdot (22\,m)

W = 24442\,N

24442 joules of work are done.

e) We may change for a bigger engine if it allows a greater acceleration and higher peak speed.

f) The gas consumption is directly proportional to the square of velocity and mass of the cart and, hence, to the work done on the cart. In consequence, we conclude that the bigger engine uses more gas to go 22 meters.

g) An empty semi truck uses more gas than a car since the first has much more mass than a car and is designed for moves big loads and for being fast.

3 0
2 years ago
A baggage handler throws a 15 kg suitcase along the floor of an airplane luggage compartment with a speed of 1.2 m/s. The suitca
Hatshy [7]

Answer:

0.0367

Explanation:

The loss in kinetic energy results into work done by friction.

Since kinetic energy is given by

KE=0.5mv^{2}

Work done by friction is given as

W= umgd

Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.

Making u the subject of the formula then we deduce that

u=\frac {v^{2}}{2gd}

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

u=\frac {1.2^{2}}{2*9.81*2}=0.0366972477064\approx 0.0367

Therefore, the coefficient of kinetic friction is approximately 0.0367

7 0
2 years ago
Other questions:
  • You can enter units that are combinations of units with prefixes. however, you must maintain the same unit system given in the p
    6·2 answers
  • A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
    15·2 answers
  • A substance has a specific heat of 0.870 J/g°C. It requires 2,000.0 joules to increase the temperature of 10.0 grams of the subs
    7·2 answers
  • Which best describes what forms in nuclear fission?A. two smaller, more stable nucleiB. two larger, less stable nucleiC. one sma
    7·2 answers
  • A glider of mass 0.240 kg is on a frictionless, horizontal track, attached to a horizontal spring of force constant 6.00 N/m. In
    14·1 answer
  • When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
    9·1 answer
  • A solid sphere is released from the top of a ramp that is at a height h1 = 2.30 m. It rolls down the ramp without slipping. The
    10·1 answer
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • Suppose that, instead of the Coulomb force law, one finds experimentally that the force between any two charge q1 and q2 is Writ
    11·1 answer
  • If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!