Answer:
The angular velocity of Ball A will be greater than the angular velocity of Ball B when they reach the top of the hill.
Explanation:
Angular velocity can be defined as how fast an object rotates relative to a given point or frame of reference.
The question said the hill encountered by Ball A is frictionless, so Ball A will continue to rotate at the same rate it started with even when it reached the top of the hill.
Ball B on the other hand rolls without slipping over its hill, i.e there's friction to slow down its rotational motion which thus reduces how fast Ball B will rotate at the top of the hill
First of all, we can find the mass of the person, since we know his weight W:

And so

We know for Newton's second law that the resultant of the forces acting on the person must be equal to the product between the mass and the acceleration a of the person itself:

There are only two forces acting on the person: his weight W (downward) and the vincular reaction Rv of the floor against the body (upward). So we can rewrite the previous equation as

We know the acceleration of the system,

(upward, so with same sign of Rv), so we can solve to find the value of Rv, the normal force exerted by the elevator's floor on the person:
Answer:
The inverse frequency is
Explanation:
Given that,
Magnetic field = 20 T
Proportionality constant = 5 Hz/T
Change in magnetic field = 3 T
We know that,

We need to calculate the inverse frequency
Using formula of frequency


Put the value into the formula


Hence, The inverse frequency is
Answer:
B.
Explanation:
One of the ways to address this issue is through the options given by the statement. The concepts related to the continuity equation and the Bernoulli equation.
Through these two equations it is possible to observe the behavior of the fluid, specifically the velocity at a constant height.
By definition the equation of continuity is,

In the problem
is
, then


<em>Here we can conclude that by means of the continuity when increasing the Area, a decrease will be obtained - in the diminished times in the area - in the speed.</em>
For the particular case of Bernoulli we have to


For the previous definition we can now replace,


<em>Expressed from Bernoulli's equation we can identify that the greater the change that exists in pressure, fluid velocity will tend to decrease</em>
The correct answer is B: "If we increase A2 then by the continuity equation the speed of the fluid should decrease. Bernoulli's equation then shows that if the velocity of the fluid decreases (at constant height conditions) then the pressure of the fluid should increase"
Complete Question
The complete question is shown on the first uploaded image
Answer:
The velocity is
in positive x -direction
The speed is 
Explanation:
From the question we are told that
The distance from the house to truck is D = 20 m
The distance traveled back to retrieve wind-blown hat is d = 15
The distance from the wind-blown hat position too the truck is k = 20 m
The total time taken is t = 75 s
Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative
Generally Justin's displacement is mathematically represented as

=> 
Generally the average velocity is mathematically represented as

=> 
=>
Generally the distance covered by Justin is mathematically represented as

=> 
=> 
Generally Justin's average speed over a 75 s period is mathematically represented as

=> 
=> 