1. With this statement, the author is referring to the fact that the vehicles are one of the largest polluters of the air. In order to reduce the pollution, the vehicles that are used will need to be changed, and with it the pollution will decrease significantly. The reduction of the pollution will come because the vehicles on hydrogen will not cause any pollution, so the enormous amounts of carbon dioxide released from the combustion of the engines will be thing of the past.
2. There are several challenges with this type of vehicles in order for them to replace the fossil fuel driven ones. The big price is one of the factors, as the majority of the people can not afford these cars. Another problem is that these vehicles are not as fast as the fossil fuel driven ones, and lot of people enjoy fast driving, despite it not being safe. There are millions of vehicles out there on the roads, and changing all of them with hydrogen vehicles will take a lot of time, as lot of those vehicles are new ones, so the people will not be willing to just throw them away and leave them rot in their garages. In order for the change of the driving park to be accomplished, the prices should go down, the people to be more serious about the environment and its protection, and patience as several decades will probably be needed for a change like this to be competed.
3. The fuel celled cars are a viable answer to decrease the pollution, as they are not causing any pollution, but instead will stop the process of large emissions of carbon dioxide from the fossil fueled cars. While this method is a good one, it should not be the only, as on its own it can not have the desirable effect, but instead all the major polluters should be included in the process. The industry and the production of energy are one of the major polluters as well, so they will need to follow the example, as if they not, the problem will stay, considering that the industry is constantly growing and the demand for energy is constantly growing too.
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω
Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


The historical method includes what steps?