Answer:
The options are approximations of the exact answers:
A) 
B) 
C) 
D) Toward the inner wall
E) 
Explanation:
A) The electric field in a parallel plate capacitor is given by the formula
, where
and in our case
and, for air,
, so we have:

B) The K+ ion has one elemental charge excess, so its charge is
, and the force a charge experiments under an electric field E is given by F=qE, so we have:

C) The potential difference between two points separated a distance d under an uniform electric potential E is given by
, so we have:

D) The electic field goes from positive to negative charges, so it goes towards the inner wall.
E) The work done by an electric field through a potential difference
on a charge Q is
, and is equal to the kinetic energy imparted on it, so we have:

It takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron from a carbon atom because its inner core e, not valence e. C's 4th removed e is still a valence e. And also <span>because more nuclear charge acting on the second electron, it is more close to the nucleus, thus the the protons attract it more than the 4th electron.</span>
Answer:
we have to find out the critical resolved shear stress. As it it given in the question
Ф = 28.1°and the possible values for λ are 62.4°, 72.0° and 81.1°.
a) Slip will occur in the direction where cosФ cosλ are maximum. Cosine for all possible λ values are given as follows.
cos(62.4°) = 0.46
cos(72.0°) = 0.31
cos(81.1°) = 0.15
Thus, the slip direction is at the angle of 62.4° along the tensile axis.
b) now the critical resolved shear stress can be find out by the following equation.
τ
= σ
( cosФ cosλ)
now by putting values,
= (1.95MPa)[ cos(28.1) cos(62.4)] = 0.80 MPa (114 Psi) 7.23
According to the second law of motion, force is the product of mass times acceleration. If we were to solve for the force, we would need the acceleration and the mass.
Acceleration was not given in the problem, but we can solve for it by using the velocity and the time because by definition, acceleration is the change in velocity over time.

The initial velocity is 16.0m/s because it is the first recorded time. The final is 0 m/s or the last recorded velocity. The time we will use is 2.0 s because it is the time the change in velocity occurred.




Now that we have acceleration, we can now solve for the Force. Again Force is the product of mass and acceleration.



or

The force is -2N. Now if you are looking for the magnitude of the force then you can just put 2N.
The negative sign indicates the direction of the force, if it is negative this means that the force applied was in the opposite direction.