The intensity of a light in a surface follows the inverse square law formula which can be mathematically expressed as,
I = k/d²
where I is intensity, d is distance, and k is the proportionality constant. For us to increase the intensity, we should lower the distance from the source to the surface.
Answer
given,
height of the dam = 15 m
effective area of water = 2.3 x 10⁻³ m²
Using energy conservation


v = 17.15 m/s
discharge of water
Q = A V
Q = 2.3 x 10⁻³ x 17.15
Q = 0.039 m³/s
E = (1/2)CV²
1 = (1/2)*(2*10⁻⁶)V²
10⁶ = V²
1000 = V
You should charge it to 1000 volts to store 1.0 J of energy.
We know the equation of motion v = u+ at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.
In this case Final velocity = -3.1 m/s, negative sign indicates it is pointing downward.
acceleration = - 3.7m/
. Negative means acceleration is towards center of planet Mars.
Time taken = 3 seconds

So jumping velocity of Julia = 8 m/s
The turns ratio is the factor that determines voltage andcurrent. In order to have the same current across the resistorin the primary as the resistor in the secondary, then:--N(p) = Primary turnsN(s) = Secondary turnsR(2) = Primary resistorR(1) = Secondary resistor--R(2)/R(1) = N(p)/N(s)R(2) = R(1)*(N(p)/N(s))--If arbitrary values are plugged in, you will see that this step up transformer will require 2x the resistance required in the secondary, R(1), to obtain the same current. Thus R(2) will be 1/2 the value of R(1). This is due to the stepped up voltage in the secondary.