Answer:
The initial velocity of the water from the tank is 5.42 m/s
Explanation:
By applying Bernoulli equation between point 1 and 2

At the point 1
P₁=0 ( Gauge pressure)
V₁= 0 m/s
Z₁=3 m
At point 2
P₂=0 ( Gauge pressure)
Z₂= 0 m/s

Now by putting the values




V₂= 5.42 m/s
The initial velocity of the water from the tank is 5.42 m/s
Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally

C) electrical energy is transformed into heat energy
As we know that range of the projectile motion is given by

here we know that range will be same for two different angles
so here we can say the two angle must be complementary angles
so the two angles must be

so it is given that one of the projection angle is 75 degree
so other angle for same range must be 90 - 75 = 15 degree
so other projection angle must be 15 degree
Answer:
The major transition occurred as a consequence of this change in the universe at this time is that <em>b)The universe became transparent to light for the first time.</em>
Explanation:
For the first 380,000 years or so, the universe was essentially too hot for light to shine. The heat of creation smashed atoms together with enough force to break them up into a dense plasma, an opaque soup of protons, neutrons and electrons that scattered light like fog. Then 380,000 years after the Big Bang, matter cooled enough for atoms to form during the era of recombination, resulting in a transparent, electrically neutral gas.
This set loose the initial flash of light created during the Big Bang, which is detectable today as cosmic microwave background radiation. However, after this point, the universe was plunged into darkness, since no stars or any other bright objects had formed yet.