The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²
Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force
Answer:
Spring constant, k = 0.3 N/m
Explanation:
It is given that,
Force acting on DNA molecule, 
The molecule got stretched by 5 nm, 
Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :



k = 0.3 N/m
So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.
The elements that is very good in
electrical conductivity are gold and copper: elements that is amphoteric are
copper, zinc, tin, lead, aluminum and beryllium: elements that is gaseous at
room temperature are hydrogen, nitrogen, oxygen, fluorine and chlorine: elements
that is solid at room temperature are all metal except mercury and perhaps some
unseen radioactive elements. Lastly, elements that is brittle are hydrogen,
carbon, nitrogen, oxygen, phosphorus, sulfur and selenium