k = spring constant of the spring = 85 N/m
m = mass of the box sliding towards the spring = 3.5 kg
v = speed of box just before colliding with the spring = ?
x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m
the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.
Using conservation of energy
Kinetic energy of spring before collision = spring energy of spring after compression
(0.5) m v² = (0.5) k x²
m v² = k x²
inserting the values
(3.5 kg) v² = (85 N/m) (0.065 m)²
v = 0.32 m/s
Answer:
The inducerd emf is 1.08 V
Solution:
As per the question:
Altitude of the satellite, H = 400 km
Length of the antenna, l = 1.76 m
Magnetic field, B = 
Now,
When a conducting rod moves in a uniform magnetic field linearly with velocity, v, then the potential difference due to its motion is given by:

Here, velocity v is perpendicular to the rod
Thus
e = lvB (1)
For the orbital velocity of the satellite at an altitude, H:

where
G = Gravitational constant
= mass of earth
= radius of earth

Using this value value in eqn (1):

Answer:
Calcium
Explanation:
Because limestone is mainly calcium carbonate, CaCO3, which when heated breaks down to form calcium oxide and carbon dioxide.
Complete Question
The complete question iws shown on the first uploaded image
Answer:
a

b

Explanation:
Now looking at the diagram let take that the magnetic field is moving in the x-axis
Now the magnetic force is mathematically represented as
x B
Note (The x is showing cross product )
Note the force(y-axis) is perpendicular to the field direction (x-axis)
Now when the loop is swinging forward
The motion of the loop is from y to z to to x to y
Now since the force is perpendicular to the motion(velocity) of the loop
Hence the force would be from z to y and back to z
and from lenze law the induce current opposes the force so the direction will be from y to z to x
Now when the loop is swinging backward
The motion of the induced current will now be x to z to y
Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.