Answer:
The astronaut's weight will be one-forth of her normal weight on earth.
Explanation:
From Newton's law of gravitation, we can write the acceleration due to gravity (g) on Earth's surface is given by

where 'G' is gravitational constant, '
' is Earth's mass and 'R' is Earth's radius.
As shown in the figure, if the astronaut is at a height 'h' from earth's surface and if '
' be the value of the acceleration due to gravity at that height, then

Taking the ratio of both the equations, and as given h = R.

So,

where 'm' is the mass of the astronaut.
So the weight of the astronaut will be one-forth her normal weight on earth.
C. refraction of light between the air and water causes the fish to appear in a different place
The answer is C because when white light enters a prism, its gets separated into component colors which are red, orange, yellow, green, blue, indigo, and violet. This can also be referred to as <span>dispersion.</span>
To solve this problem we will apply the concepts related to the centripetal force, for which it is necessary to equate it with the static friction force of the body. From this, we will clear the speed and replace with the given values. Our values are defined as,



Maximum velocity can be find out using centripetal force,

Must be equal to,




Therefore the maximum speed that he can travel through the arc without slipping is 9.93m/s
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
The height of the diving board is given as

now the speed of the diver is given as

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board
So we will have



Part b)

plug in the values in the above equation


Part c)
Horizontal distance moved by the diver is given as



so the distance from the edge of the pool is given as

