answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
12

The vector product of vectors A⃗ and B⃗ has magnitude 12.0 m2 and is in the +z-direction.Vector A⃗ has magnitude 4.0 m and is in

the −x-direction. Vector B⃗ has no x-component.Part A: What is the magnitude of vector B⃗ ? (I solved this question the answer is 3 and it's correct)Part B: What is the direction angle θ of vector B⃗ measured from the +y-direction to the +z-direction? (This is the part that I didn't get it correct)
Physics
1 answer:
g100num [7]2 years ago
8 0

Answer:

θ=180°

Explanation:

The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.

Using the right hand rule for vector product, we can test the two possible cases:

  • If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.

  • If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.

Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).

You might be interested in
Passing an electric current through a certain substance produces oxygen and sulfur. This substance cannot be a(n)
Nezavi [6.7K]

Answer:

An Element

Explanation:

Such substance cannot be an element because an element cannot be chemically disintegrated (i.e it cannot be disintegrated via chemical reaction).

4 0
2 years ago
A machine part is vibrating along the x-axis in simple harmonic motion with a period of 0.27 s and a range (from the maximum in
Gnoma [55]

Answer:

x = -1.437 cm

Explanation:

The general equation for position of Simple harmonic motion is given as:

x = A sin(\omega t)          ........(1)

where,

x = Position of the wave

A = Amplitude of the wave

ω = Angular velocity

t = time

In this case, the amplitude is just half the range,

thus,

A =\frac{3cm}{2}=1.5cm  (Given range = 3cm)

A = 1.5 cm  

Now, The angular velocity is given as:

\omega=\frac{2\pi}{T}

Where, T = time period of the wave =0.27s (given)

\omega=\frac{2\pi}{0.27s}

or

\omega=23.27s^{-1}

so, at time t = 55 s, the equation (1) becomes as:

x = 1.5 sin(23.27\times 55)

on solving the above equation we get,

x = -1.437 cm

here the negative sign depicts the position in the opposite direction of +x

5 0
2 years ago
A battleship launches a shell horizontally at 100 m/s from the ship’s deck that’s 50 m above the water. The shell is intended to
Annette [7]

Answer:

The shell will land 10.18m away from the buoy.

Explanation:

In order to solve this problem, we must first do a sketch of what the problem looks like (see attached picture).

Now, there are two cases, one with the tailwind and another with the tailwind. In both cases the shell would have the same vertical initial velocity and acceleration, therefore the shell would hit the water in the same amount of time. So we need to first find the time it takes the shell to hit the water.

In order to do so we can use the following equation:

y_{f}=y_{0}+V_{0}t+\frac{1}{2}at^{2}

now, we know that the final height and the initial velocity are to be zero, so we can simplify the equation like this:

0=y_{0}+\frac{1}{2}at^{2}

and solve for t:

t=\sqrt{\frac{-2y_0}{a}}

now we can substitute the values:

t=\sqrt{\frac{-2(50m)}{-9.81m/t^2}}

t=3.19s

Since it takes 3.19s for the shell to hit the water, that's the amount of time it spends flying horizontally.

So we can consider the shell to move at a constant speed if there was no tailwind, so we can find the  distance from the ship to point A to be:

x_{A}=V_{x}t

x_{A}=(100m/s)(3.19)

x_{A}=319m

We can now find the distance between the ship to point B, which is the point the ball falls due to the tailwind. Since the movement will be accelerated in this scenario, we can find the distance by using the following formula:

x_{f}=V_{x0}t+\frac{1}{2}a_{x}t^{2}

So we can substitute the given values:

x_{f}=(100m/s)(3.19s)+\frac{1}{2}(2m/s^{2})(3.19s)^{2}

Which yields:

x_{f}=329.18m

so now we can use the A and B points to find by how far the shell missed the buoy:

Distance=329.18m-319m=10.18m

So the shell missed the buoy by 10.18m.

8 0
2 years ago
Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by th
mote1985 [20]

Answer:

U = 1794.005 × 10⁶ J

Explanation:

Data provided;

Capacitance of the original capacitor, C = 1.27 F

Potential difference applied to the original capacitor, V = 59.9 kV

= 59.9 × 10³ V

Now,

The Potential energy (U) for the capacitor is calculated as:

Potential energy of the original capacitor, U = \frac{\textup{1}}{\textup{2}}  × C × V²

on substituting the respective values, we get

U = \frac{\textup{1}}{\textup{2}}  × 1.27 × ( 59.9 × 10³ )²

or

U = 1794.005 × 10⁶ J

7 0
2 years ago
For what value m of the clockwise couple will the horizontal component ax of the pin reaction at a be zero? if a couple of that
sergejj [24]
Thank you for posting your question here at brainly. Below is the answer:

sum of Mc = 0 = -Ay(4.2 + 3cos(59)) + (275)(2.1 + 3cos(59)) + M 
<span>- Ay = (M + (275*(2.1 + 3cos(59)))/(4.2 + 3cos(59)) </span>

<span>sum of Ma = 0 = (-275)(2.1) - Cy(4.2 + 3cos(59)) + M </span>
<span>- Cy = (M - (275*2.1))/(4.2 + 3cos(59)) </span>

<span>Ay + Cy = 275 = ((M+1002.41)+(M-577.5))/(5.745) </span>
<span>= (2M + 424.91)/(5.745) </span>

<span>M = ((275*5.745) - 424.91)/2 </span>
<span>= 577.483 which rounds off to 577 </span>

<span>Is it maybe supposed to be Ay - Cy = 275</span>
8 0
2 years ago
Other questions:
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • There is a 120 V circuit in a house that is a dedicated line for the dishwasher, meaning the dishwasher is the only resistor on
    12·2 answers
  • Identify the arrows that show input force
    14·2 answers
  • Inductive charging is used to wirelessly charge electronic devices ranging from toothbrushes to cell phones. Suppose the base un
    14·1 answer
  • A particle leaves the origin with an initial velocity v → = (3.00iˆ) m/s and a constant acceleration a → = (−1.00iˆ − 0.500jˆ) m
    10·1 answer
  • The magnitude of the resultant force is to be 200 N, directed along the positive ݒaxis. Determine the magnitude of the force Fin
    14·1 answer
  • Sally finds herself stranded on a frozen pond so slippery that she can't stand up or walk on it. To save herself, she throws one
    9·2 answers
  • A diffraction grating is illuminated with yellow light at normal incidence. The pattern seen on a screen behind the grating cons
    9·1 answer
  • You are at a stop light in your car, stuck behind a red light. Just before the light is supposed to change, a fire engine comes
    13·1 answer
  • A wildebeest and chicken participate in a race over a 2.00km long course. the wildebeest travels at a speed of 16.0m/s and chick
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!