Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:0
Explanation:
Given
circumference of circle is 2 m
Tension in the string 


In this case Force applied i.e. Tension is Perpendicular to the Displacement therefore angle between Tension and displacement is 



Answer:
(i) 208 cm from the pivot
(ii) Move further from the pivot
Explanation:
(i) Sum of the moments about the pivot of the seesaw is zero.
∑τ = Iα
(50 kg) (10 N/kg) (2.5 m) + (60 kg) (10 N/kg) x = 0
1250 Nm + 600 N x = 0
x = -2.08 m
Kenny should sit 208 cm on the other side of the pivot.
(ii) To increase the torque, Kenny should move away from the pivot.
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
(a) 
(b) 
Explanation:
Hello.
(a) In this case, since the initial volume is 18.5 dm³ and the final volume is 21 dm³ (18.5 +2.5), we can compute the work at constant pressure as shown below:

Which is negative as it expands against the given pressure.
(b) Moreover, of the process is carried out reversibly, the pressure can change, therefore, we need to compute the work via:

Whereas the moles are computed from the given mass of argon:

Thus, the work is:

Regards.