Answer:

Explanation:
The speed of light is given by
and
hence

Speed of light is given by

Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Answer:
a) v = √ g x
, b) W = 2 m g d
, c) a = ½ g
Explanation:
a) For this exercise we use Newton's second law, suppose that the block of mass m moves up
T-W₁ = m a
W₃ - T = M a
w₃ - w₁ = (m + M) a
a = (3m - m) / (m + 3m) g
a = 2/4 g
a = ½ g
the speed of the blocks is
v² = v₀² + 2 ½ g x
v = √ g x
b) Work is a scalar, therefore an additive quantity
light block s
W₁ = -W d = - mg d
3m heavy block
W₂ = W d = 3m g d
the total work is
W = W₁ + W₂
W = 2 m g d
c) in the center of mass all external forces are applied, they relate it is
a = ½ g
Answer:
it is essential that the charge on the plates are of the same magnitude, but in the opposite direction
Explanation:
The configuration of parallel plates is called a capacitor and is widely used to create constant electric fields inside.
To obtain this field it is essential that the charge on the plates are of the same magnitude, but in the opposite direction
This is so that the fields created by each plate can be added inside and subtracted from the outside of the plates
The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²