We use the kinematic equations,
(A)
(B)
Here, u is initial velocity, v is final velocity, a is acceleration and t is time.
Given,
,
and
.
Substituting these values in equation (B), we get
.
Therefore from equation (A),

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s
The random variable in this experiment is a Continuous random variable.
Option D
<u>Explanation</u>:
The continuous random variable is random variable where the data can take infinite variables. For example random variable is taken for measuring "speed of automobiles" on the highways. The radar instrument depicts time taken by automobile in particular what speed. They are the generalization of discrete random variables not the real numbers as a random data is created. It gives infinite sets of all possible outcomes. It is obvious that outcomes of the instrument depend on some "physical variables" those are not predictable as depends on the situation.
Answer:
<h2>0.069 N, in the X direction</h2>
Explanation:
According to Flemming's left hand rule, it sates that if the first three fingers of the left hand are held mutually at right angles to one another, the fore finger will point in the direction of magnetic field, the middle finger will point in direction of current, while the thumb will point to the direction of force.
Mathematically the law is stated as
F= BIL
given data
Magnetic field B= 0.43T
Current I= 4.9 A
length of conductor L= 3.3cm to meter , 3.3/100= 0.033 m
Applying the formula the force is calculated as
F= 0.43*4.9* 0.033= 0.069 N
According to Flemming's rule the direction of all parameters are mutually perpendicular to one another, then the Force is in the X direction
The image in the attachment describes the situation of the fishing rod.
Answer: F = 10.8 N
Explanation: The image shows a fishing rod attached to an axis. To stay in equilibrium, <u>Torque</u> must be equal for the force of magnitude 18N and for the unknow force.
<u>Torque </u>(τ) is a measure of a force's tendency to cause rotation and, in physics, defined as:
τ = F.r.sin(θ)
F is the force acting on the object;
r is distance between where the torque is measured to where the force is applied;
θ is the angle between F and r;
For the fishing rod:


Assuming part (1) is related to unknown force:

Replacing the corresponding values:


F = 10.8
<u>The fishing line exert on the the rod a force of </u><u>10.8N</u>.
Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA