answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
2 years ago
8

For what value m of the clockwise couple will the horizontal component ax of the pin reaction at a be zero? if a couple of that

same magnitude m were applied in a counterclockwise direction, what would be the value of ax?
Physics
1 answer:
sergejj [24]2 years ago
8 0
Thank you for posting your question here at brainly. Below is the answer:

sum of Mc = 0 = -Ay(4.2 + 3cos(59)) + (275)(2.1 + 3cos(59)) + M 
<span>- Ay = (M + (275*(2.1 + 3cos(59)))/(4.2 + 3cos(59)) </span>

<span>sum of Ma = 0 = (-275)(2.1) - Cy(4.2 + 3cos(59)) + M </span>
<span>- Cy = (M - (275*2.1))/(4.2 + 3cos(59)) </span>

<span>Ay + Cy = 275 = ((M+1002.41)+(M-577.5))/(5.745) </span>
<span>= (2M + 424.91)/(5.745) </span>

<span>M = ((275*5.745) - 424.91)/2 </span>
<span>= 577.483 which rounds off to 577 </span>

<span>Is it maybe supposed to be Ay - Cy = 275</span>
You might be interested in
Three wires are made of copper having circular cross sections. Wire 1 has a length l and radius r. Wire 2 has a length l and rad
Alex73 [517]

Explanation:

Below is an attachment containing the solution.

4 0
2 years ago
A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
Anna35 [415]

Answer:

a. The temperature of the copper changed more than the temperature of the water.

Explanation:

Because we're only considering the isolated system cube-water, the heat of the system should be constant, that implies the heat the cube loses is equal the heat the water gains (because by zero law of thermodynamics heat (Q) flows from hot body to cold body until reach thermal equilibrium and T1>T2). So:

Q_{cube}=Q_{water} (1)

But Q is related with mass (m), specific heat (c) and changes in temperature (\varDelta T)in the next way:

Q=cm\varDelta T(2)

Using (2) on (1):

c_{cooper}*m_{cooper}*\varDelta T_{cooper}=c_{water}*m_{waterer}*\varDelta T_{water}

(10g)(0.385 \frac{J}{g\,C})(\varDelta T_{cooper})=(10g)(4.186 \frac{J}{g\,C})(\varDelta T_{water})

(0.385 \frac{J}{g\,C})(\varDelta T_{cooper})=(4.186 \frac{J}{g\,C})(\varDelta T_{water})

Because we have an equality and 0.385 < 4.186 then \varDelta T_{cooper}>\varDelta T_{waterer} to conserve the equality

4 0
2 years ago
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
2 years ago
A solid cylinder of mass 12.0 kg and radius 0.250 m is free to rotate without friction around its central axis. If you do 75.0 J
faltersainse [42]

Answer:

20 rad/s

Explanation:

mass, m = 12 kg

radius, r = 0.250 m

Moment of inertia of cylinder, I = 1/2 mr²

I = 0.5 x 12 x 0.250 x 0.250 = 0.375 kgm^2

Work done = Change in kinetic energy

Initial K = 0

Final K = 1/2 Iω²

W = 1/2 Iω²

ω² = 2W/ I = 2 x 75 / (0.375)

ω = 20 rad/s

Thus, the final angular velocity is 20 rad/s .

8 0
2 years ago
Two flywheels of negligible mass and different radii are bonded together and rotate about a common axis (see below). The smaller
jeka94

Answer:

Explanation:

Torque on smaller wheel

= F x r

50 x .30

= 15 Nm

Torque on larger wheel

= F x .5

For equilibrium

F x .5 = 15

F = 15 / .5

= 30 N

8 0
2 years ago
Other questions:
  • The first thing to focus on when creating a workout plan is
    7·2 answers
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • A bowling ball has a mass of 5.5 kg and a radius of 12.0 cm. It is released so that
    7·1 answer
  • A block is suspended from a scale and then lowered into a bucket of water. The density of the water is 1 gm/cm3. The initial rea
    7·1 answer
  • In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
    12·1 answer
  • Complete each statement about the sign of the work done on a baseball. Carlton catches a baseball and his hand moves backward as
    13·1 answer
  • An ideal gas trapped inside a thermally isolated cylinder expands slowly by pushing back against a piston. The temperature of th
    11·1 answer
  • Josh is learning to dive.
    7·1 answer
  • Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burni
    6·1 answer
  • An empty container is filled with helium to a pressure P at a temperature T. Neon, which has atoms that are 5 times more massive
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!