<u>Answer:</u>
<em>Newtons II law: </em>
<em> </em>It is defined as<em> "the net force acting on the object is a product of mass and acceleration of the body"</em> . Also it defines that the <em>"acceleration of an object is dependent on net force and mass of the body".</em>
Let us assume that,a string is attached to the cart, which passes over a pulley along the track. At another end of the string a weight is attached which hangs over the pulley. The hanging weight provides tension in the spring, and it helps in accelerating the cart. We assume that the string is massless and no friction between pulley and the string.
Whenever the hanging weight moves downwards, the cart will accelerate to right side.
<em>For the hanging weight/mass</em>
When hanging weight of mass is m₁ and accelerate due to gravitational force g.
Therefore we can write F = m₁ .g
and the tension acts in upward direction T (negetive)
Now, Fnet = m₁ .g - T
= m₁.a
So From Newtons II law<em> F = m.a</em>
Answer:
Explanation:
Total energy of a satellite in an orbit , h height away
= - GMm /2 ( R + h )
When h = 380 km
Total energy of a satellite = 
= - 13.25 x 10¹⁰ J
When h = 190 km
Total energy of a satellite =

= - 13.63 x 10¹⁰ J
Diff
= 38 x 10⁸ J Energy will be required.
Answer:
We can conclude that there is a decrease in kinetic energy of the particles due to their elastic collision, since kinetic energy is directly proportional to squared velocity of the particles.
Explanation:
Given:
initial velocity of particle A, Ua = 5m/s
initial velocity of particle B, Ub = 10 m/s
final velocity of particle A, Va = 4m/s
final velocity of particle B, Vb = 7m/s
For particle A:
The final velocity is 1 less than the initial velocity.
For particle B:
The final velocity is 3 less than the initial velocity.
We can conclude that there is a loss in kinetic energy due to elastic collision of the two particles, since kinetic energy is directly proportional to squared velocity of the particles. A decrease in velocity means decrease in kinetic energy.
Answer:
178200
g mile pounds
Explanation:
Work= Force * Distance= Fh
F=ma=mg where m is mass and g is acceleration due to gravity
Work= 165 pounds *g* 1080 m= 178200
g mile pounds
Field lines always point away from the positive side of a magnet. So i would say east but im not to sure