<h2>Answer:</h2>
<u>This term shows the </u><u>mass of the space shuttle</u>
<h2>Explanation:</h2>
We know that the mass of the Earth is 5.972 × 10^24 kg. Similarly the sum of mass of earth and the mass of shuttle must be a greater number as compared to the number given. It simply means that the mass of earth is itself 5.972 × 10^24 kg and the value given is 3 × 105 kg so it is obvious that if was the sum then it must be greater than the mass of earth. Therefore we can say that this not the mass of earth, neither the sum of mass of earth and shuttle, but this is only the mass of space shuttle which is the last multiple choice.
Answer:
3000 kg.m/s
Explanation:
Momentum, p is a product of mass and velocity hence
p=mv where m is mass and v is velocity.
Change in momentum is given by
where subscripts f and i represent final and initial respectively. Since the lorry finally comes to rest then the final velocity is zero. Substituting the given figures then
Change in momentum= 6000(0-0.5)=-3000 kg.m/s
Answer:
The torque in the coil is 4.9 × 10⁻⁵ N.m
Explanation:
T = NIABsinθ
Where;
T is the torque on the coil
N is the number of loops = 9
I is the current = 7.8 A
A is the area of the circular coil = ?
B is the Earth's magnetic field = 5.5 × 10⁻⁵ T
θ is the angle of inclination = 90 - 56 = 34°
Area of the circular coil is calculated as follows;

T = 9 × 7.8 × 0.0227 × 5.5×10⁻⁵ × sin34°
T = 4.9 × 10⁻⁵ N.m
Therefore, the torque in the coil is 4.9 × 10⁻⁵ N.m
Explanation:
A) The distance between the two successive compressions (or rarefactions) is actually called the wavelength of the longitudinal waves.
B) Wavelengths of longitudinal and transverse waves are comparable in the fact that in a transverse wave, the particles move perpendicular to the direction the wave travels whereas in a longitudinal wave the particles are displaced along the direction to the direction the wave travels
Answer:

Explanation:
-The only relevant force is the electrostatic force
-The formula for the electrostatic force is:

E is the electric field and q is the magnitude of the charge.
#Since the electric field is the same in both cases, and the charge of the protons and electrons have the same magnitude, you can state that the magnitude of the electric forces acting in both proton and electron are the same.

-Applying Newton's 2nd Law:



#equate the two forces:

#The equations for velocity in uniform acceleration:

#For the proton:

#For the electron:

The mass values of the proton and electron are:

The speed of the ion is therefore calculated as:

Hence, the ion's speed at the negative plate is 