Answer:
Reproducibility of research
Explanation:
The principle of science that explains why similar experimental investigations conducted in different parts of the world could result in the same outcome is referred to as reproducibility.
<em>A good research or experiment in science must be reproducible, otherwise, the outcome of such an experiment might become inadmissible within the scientific community. It is a core principle of the scientific method that similar results should be obtained when an experiment or observational study conducted in one place is repeated in another place with the same procedure. Hence, an experiment must be reproducible in science in order for the outcome of such an experiment to be part of the general scientific knowledge. </em>
Answer:
the wave length becomes doubled or becomes two times the initial wavelength = 240 cm
Explanation:
From wave,
v = λf................ Equation 1
Where v = velocity of the wave, λ = wavelength of the wave, f = frequency of the wave.
Given: f = 1200 Hz, λ = 120 cm = 1.2 m
Substitute into equation 1
v = 1200(1.2)
v = 1440 m/s.
When the ship sent out a 600 Hz sound wave,
make λ the subject of formula in equation 1
λ = v/f............. Equation 2
Given: f = 600 Hz, v = 1440 m/s
Substitute into equation 2
λ = 1440/600
λ = 2.4 m or 240 cm.
When the ship sent out a 600 Hz sound wave instead, the wave length becomes doubled or becomes two times the initial wavelength = 240 cm
When light hits the boundary between two different materials, it can undergo both reflection and refraction.
Reflection is the change in the direction of the
wave that strikes the boundary between two materials.<span> It involves a change in the direction of waves when they clash with an obstacle.
Refraction involves the change in the direction of waves as they move from one medium to </span><span><span>another followed</span></span><span> by a change in speed and wavelength (this second medium should have different permitivity for the light to change its initial properties.)</span>
Answer:
(1) An object that’s negatively charged has more electrons than protons.
(2) An object that’s positively charged has fewer electrons than protons.
(3) An object that’s not charged has the same number of electrons than protons.
Explanation :
Objects have three subatomic particles that are Electrons, protons, and neutrons.
Protons and neutrons are found in the nucleus and electrons rotate or move outside the nucleus. Naturally, protons are positively charged, neutrons have no charge, and electrons are negatively charged.
Therefore, an object that is negatively charged has more electrons than protons. An object that is not charged has the same number of electrons than protons. An object that is positively charged has fewer electrons than protons.